




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题训练:数学思想方法 教学设计磐石市 驿马中学 李绪聪一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。三、解题方法 (1)整体思想:整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决(2)转化思想:在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题(3)分类讨论思想:体现了化整为零、积零为整的思想与归类整理的方法分类的原则:分类中的每一部分是相互独立的;一次分类按一个标准;分类讨论应逐级进行正确的分类必须是周全的,既不重复,也不遗漏(4)方程思想:用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)这种思想在代数、几何及生活实际中有着广泛的应用(5)函数思想:用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质(6)数形结合思想:从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决四、考点精讲1、整体思想整体思想是将问题看成一个完整的整体,把注意力和着眼点放在问题的整体结构和结构改造上,从整体上把握问题的内容和解题的方向与策略.运用整体思想解题,往往能为许多考试题找到简便的解法.【例1】(2013吉林)若a2b3,则2a4b5_ 【分析】本题考查了代数式求值代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a2b)的值,然后利用“整体代入法”求代数式的值评注:从结构上对题目的条件和问题进行全面、深刻的分析和改造是应用整体思想的基础和关键.对应训练:1(2014盐城)已知x(x3)1,则代数式2x26x5的值为_2、转化思想【例2】(2013东营)如图,圆柱形容器中,高为1.2 m,底面周长为1 m,在容器内壁离容器底部0.3 m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3 m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为_ m(容器厚度忽略不计) 【分析】本题利用转化思想把立体问题转化为平面问题,从而使问题简单化、直观化将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键同时也考查了同学们的创造性思维能力对应训练:2(2014枣庄)图所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图的几何体,一只蚂蚁沿着图的几何体表面从顶点A爬行到顶点B的最短距离为 cm. 3、分类讨论思想分类讨论就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法.其实质是化整为零,各个击破,化大难为小难的的策略.【例3】在矩形ABCD中,点E在BC边上,过E作EFAC于F,G为线段AE的中点,连接BF,FG,GB。设ABBC=k.(1)证明:BGF是等腰三角形;(2)当k为何值时,BGF是等边三角形?【分析】本题考查了直角三角形斜边上的中线等于斜边的一半的运用、等腰三角形的判定定理的运用、外角与内角的关系的运用、分类讨论思想在实际问题中的运用,解答时灵活运用直角三角形的性质及外角与内角的关系是关键评注:分类的原则是“不重不漏”,对每一种情况都要分析.对应训练: 3(2014绥化)在一条笔直的公路旁依次有A,B,C三个村庄,甲、乙两人同时分别从A,B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题: (1)A,C两村间的距离为 km,a ;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10 km? 4、方程思想方程是初中数学的重要内容,它内容丰富,涉及面广,综合性强,因而用方程思想解数学题有广泛的应用.利用方程思想的基本类型有:通过列方程或方程组求出待定系数,进而求出函数的解析式;研究函数图象的交点、解决二次函数图象与x轴交点的有关问题.方程思想在解决几何问题时也经常用到.所谓用方程思想解几何题,就是充分挖掘条件和结论中隐含的数量关系,借助图形的直观性质,寻求已知量与未知量之间的等量关系,从而列出方程(组),然后解出方程,进而使几何题得到解决.【例4】为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于2000.55第二档大于200小于4000.6第三档大于等于4000.85某户居民5,6月份共用电500度,缴电费290.5元已知该用户6月份用电量大于5月份,且5,6月份的用电量均小于400度问该户居民5,6月份各用电多少度?【分析】本题考查了列一元一次方程解实际问题、方程思想的运用、分类讨论思想的运用,另外要注意:总价单价数量对应训练:4(2013娄底)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象已知A、B两点相距4米,探测线与地面的夹角分别是30和45,试确定生命所在点C的深度(精确到0.1米,参考数据:1.41, 1.73)5、函数思想函数思想一方面是指以函数概念为依托,运用运动和变化的观点,分析和研究具体问题中的数量关系,通过函数的形式,把这种数量关系表示出来,(即建立函数表达式)并加以研究,从而使问题获得解决.另一方面是对函数概念本质的认识,即利用函数的图象或函数的性质去分析、观察其它数学问题并加以解决.(1)求w关于x的函数关系式;(2)如果购进两种书包的总费用不超过18000元,那么该商场如何进货才能获得利润最大?并求出最大利润(提示利润售价进价)【分析】本题考查了由销售问题的数量关系求函数的解析式的运用、列一元一次不等式解实际问题的运用、一次函数的性质的运用,解答时注意函数思想的应用评注:函数思想是解决实际问题中方案、费用最低等类型问题的最主要方法。对应训练:5(2014沈阳)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20x30,且x为整数)出售,可卖出(30x)件若使利润最大,每件的售价应为_元6、数形结合思想所谓数形结合思想就是在研究问题时把数和形结合考虑或者把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系,从而使复杂的问题简单化,抽象的问题形象化、具体化.【例6】(2013玉林)如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有_个,写出其中一个点P的坐标是 【分析】本题考查了等腰三角形的判定、坐标与图形的性质,利用数形结合的思想求解更简便评注:解决这类问题的关键是找出其中的规律.主要有两种方法,1.看后面图形与前一个图形发生了怎样的变化,从变化中找规律;2.看每个图形中角的个数与图形序号之间的关系,从而写出通式.对应训练:6(2014孝感)抛物线yax2bxc的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如图所示,则以下结论:b24ac0;abc0;ca2;方程ax2bxc20有两个相等的实数根其中正确的个数有( )A1个B2个C3个D4个五、真题训练一、选择题1(2013六盘水)下面四个几何体中,主视图是圆的几何体是()ABCD1D2(2013南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A4B3C2D12C3(2013娄底)一次函数y=kx+b(k0)的图象如图所示,当y0时,x的取值范围是()Ax0Bx0Cx2Dx24C5(2013常州)已知O的半径是6,点O到直线l的距离为5,则直线l与O的位置关系是()A相离B相切C相交D无法判断5C6(2013鞍山)已知:如图,OA,OB是O的两条半径,且OAOB,点C在O上,则ACB的度数为()A45B35C25D206A7(2013黔东南州)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()来源:Z*xx*k.ComAa0,b0,c0,b2-4ac0 Ba0,b0,c0,b2-4ac0Ca0,b0,c0,b2-4ac0 Da0,b0,c0,b2-4ac07D8(2013衢州)如图,小敏同学想测量一棵大树的高度她站在B处仰望树顶,测得仰角为30,再往大树的方向前进4m,测得仰角为60,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m, 1.73)A3.5mB3.6mC4.3mD5.1m8D9(2013娄底)如图,O1,O2、相交于A、B两点,两圆半径分别为6cm和8cm,两圆的连心线O1O2的长为10cm,则弦AB的长为()A4.8cmB9.6cmC5.6cmD9.4cm9B10(2013曲靖)某地资源总量Q一定,该地人均资源享有量与人口数n的函数关系图象是()ABCD10B11(2013凉山州)如图,正比例函数y1与反比例函数y2相交于点E(-1,2),若y1y20,则x的取值范围在数轴上表示正确的是()A BC D11A12(2013遵义)二次函数y=ax2+bx+c(a0)的图象如图如图所示,若M=a+b-c,N=4a-2b+c,P=2a-b则M,N,P中,值小于0的数有()A3个B2个C1个D0个12A13(2013杭州)在ABCD中,下列结论一定正确的是()AACBDBA+B=180CAB=ADDAC13B14(2013乌鲁木齐)如图,半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,直径FG在AB上,若BG=-1,则ABC的周长为()A4+2B6C2+2D414A15(2013德阳)如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=4,则CEF的面积是()A2BC3D415A16(2013绍兴)小敏在作O的内接正五边形时,先做了如下几个步骤:(1)作O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2若O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()ABD2= ODBBD2=ODCBD2=ODDBD2=OD16C17(2013杭州)给出下列命题及函数y=x,y=x2和y=,如果aa2,那么0a1;如果a2a,那么a1;如果a2a,那么-1a0;如果a2a时,那么a-1则()A正确的命题是 B错误的命题是C正确的命题是 D错误的命题只有17A二、填空题18(2013岳阳)如图,点P(-3,2)处的一只蚂蚁沿水平方向向右爬行了5个单位长度后的坐标为 (2,2)来源:学。科。网Z。X。X。K18(2,2)19(2013平凉)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为 5米19520(2013安顺)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90后,得到线段AB,则点B的坐标为 (4,2)20(4,2)21(2013昆明)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得AOP是等腰三角形,则这样的点P共有 8个21822(2013杭州)四边形ABCD是直角梯形,ABCD,ABBC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1-S2|= 4(平方单位)22423(2013自贡)如图,边长为1的小正方形网格中,O的圆心在格点上,则AED的余弦值是 2324(2013广安)如图,如果从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是 3cm24325(2013江西)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为 2627(2013包头)如图,在三角形纸片ABC中,C=90,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为 4274三、解答题28(2013齐齐哈尔)如图所示,在OAB中,点B的坐标是(0,4),点A的坐标是(3,1)(1)画出OAB向下平移4个单位长度、再向左平移2个单位长度后的O1A1B1(2)画出OAB绕点O逆时针旋转90后的OA2B2,并求出点A旋转到A2所经过的路径长(结果保留)28解:(1)如图所示:O1A1B1,即为所求;(2)如图所示:OA2B2,即为所求,AO=,点A旋转到A2所经过的路径长为:29(2013齐齐哈尔)甲乙两车分别从A、B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶(1)A、B两地的距离 560千米;乙车速度是 100km/h;a表示 (2)乙出发多长时间后两车相距330千米?29解:(1)t=0时,S=560,所以,A、B两地的距离为560千米;甲车的速度为:(560-440)1=120km/h,设乙车的速度为xkm/h,则(120+x)(3-1)=440,解得x=100;相遇后甲车到达B地的时间为:(3-1)100120=小时,所以,a=(120+100)=千米;(2)设直线BC的解析式为S=k1t+b1(k10),将B(1,440),C(3,0)代入得,解得,所以,S=-220t+660,当-220t+660=330时,解得t=1.5,所以,t-1=1.5-1=0.5;直线CD的解析式为S=k2t+b2(k20),点D的横坐标为+3=,将C(3,0),D(,)代入得,解得,所以,S=220t-660,当220t-660=330时,解得t=4.5,所以,t-1=4.5-1=3.5,答:乙出发多长0.5小时或3.5小时后两车相距330千米30(2013南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围30解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:302=15千米/时,乙的速度:301=30千米/时,30(15+30)=,30=20千米,所以,点M的坐标为(,20),表示小时后两车相遇,此时距离B地20千米;(3)设x小时时,甲、乙两人相距3km,若是相遇前,则15x+30x=30-3,解得x=,若是相遇后,则15x+30x=30+3,解得x=,若是到达B地前,则15x-30(x-1)=3,解得x=,所以,当x或x2时,甲、乙两人能够用无线对讲机保持联系31(2013天门)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(-3,2),BCy轴于点C,且OC=6BC(1)求双曲线和直线的解析式;(2)直接写出不等式kx+b的解集31解:(1)点A(-3,2)在双曲线y=上,2=,即m=-6,双曲线的解析式为y=-,点B在双曲线y=-上,且OC=6BC,设点B的坐标为(a,-6a),-6a=-,解得:a=1(负值舍去),点B的坐标为(1,-6),直线y=kx+b过点A,B,解得:直线的解析式为y=-2x-4;32(2013衢州)如图,函数y1=-x+4的图象与函数y2=(x0)的图象交于A(a,1)、B(1,b)两点(1)求函数y2的表达式;(2)观察图象,比较当x0时,y1与y2的大小32解:(1)把点A坐标代入y1=-x+4,得-a+4=1,解得:a=3,(1分)A(3,1),把点A坐标代入y2=,k2=3,函数y2的表达式为:y2=;(2)由图象可知,当0x1或x3时,y1y2, 当x=1或x=3时,y1=y2, 当1x3时,y1y2(2)根据图象得:不等式kx+b的解集为-3x0或x133 (2013鄂州)小明、小华在一栋电梯楼前感慨楼房真高小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,A=30,B=45,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由(参考数据:1.73, 1.41, 2.24)33解:(1)设楼高为x米,则CF=DE=x米,A=30,B=45,ACF=BDE=90,AC=x米,BD=x米,x+x=150-10,解得x=70(-1)(米),楼高70(-1)米(2)x=70(-1)70(1.73-1)=700.73=51.1米320米,我支持小华的观点,这楼不到20层34(2013十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?34解:(1)设商场应购进A型台灯x盏,则B型台灯为(100-x)盏,根据题意得,30x+50(100-x)=3500,解得x=75,所以,100-75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45-30)x+(70-50)(100-x),=15x+2000-20x,=-5x+2000,B型台灯的进货数量不超过A型台灯数量的3倍,100-x3x,x25,k=-50,x=25时,y取得最大值,为-525+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元35(2013衢州)“五一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票经调查发现,在车站开始检票时,有640人排队检票检票开始后,仍有旅客继续前来排队检票进站设旅客按固定的速度增加,检票口检票的速度也是固定的检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人已知检票的前a分钟只开放了两个检票口某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示(1)求a的值(2)求检票到第20分钟时,候车室排队等候检票的旅客人数(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?35解:(1)由图象知,640+16a-214a=520,a=10;(2)设当10x30时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,y=-26x+780,当x=2时,y=260,即检票到第20分钟时,候车室排队等候检票的旅客有260人(3)设需同时开放n个检票口,则由题意知14n15640+1615解得:n4,n为整数,n=5答:至少需要同时开放5个检票口36(2013南充)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F求证:OE=OF36证明:四边形ABCD是平行四边形,OA=OC,ABCD,OAE=OCF,在OAE和OCF中,OAEOCF(ASA),OE=OF37(2013营口)某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选同时把调查得到的结果绘制成如图所示的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出口食品退货申请书
- 木子影视社团申请书
- 引流打卡的申请书
- 测绘备案申请书范本
- 撤销取保候审申请书
- 安全检查知识培训感悟课件
- 化工补贴申请书范本
- 毕业生实习申请书
- 关于进入院申请书
- 辞职返校申请书
- 形成性评价指导性规范:SOAP病例汇报评价
- 燃料电池+基础理论动力学+热力学+研究方法
- 高等数学教材(文科)
- 歌词:半生雪(学生版)
- 九江学院学位英语往年考题
- 药品不良反应培训试题
- 2024-2030年中国纳米晶软磁材料行业市场发展趋势与前景展望战略分析报告
- 五级保健按摩师(初级)职业技能鉴定考试题库-下(判断题)
- JBT 6064-2015 无损检测 渗透试块通.用规范
- 陕鼓集团线上笔试题目
- 品质提升计划改善报告课件
评论
0/150
提交评论