碱裂解发制备质粒DNA原理.docx_第1页
碱裂解发制备质粒DNA原理.docx_第2页
碱裂解发制备质粒DNA原理.docx_第3页
碱裂解发制备质粒DNA原理.docx_第4页
碱裂解发制备质粒DNA原理.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

碱裂解发制备质粒DNA原理试验原理: 碱裂解法是较常用的提取的方法。其优点是收获率高,适于多数的菌株,所得产物经纯化后可满足多数的DNA重组操作。十二烷基磺酸钠进行质粒的小量制备。十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性(NaOH对细胞的裂解作用强于SDS)。用SDS处理细菌后,会导致细菌细胞破裂,释放出质粒 DNA和染色体DNA,两种DNA在强碱环境都会变性。由于质粒和主染色体的拓扑结构不同,变性时前者虽然两条链分离,却仍然缠绕在一起不分开;但后者完全变性分甚至出现断裂,因此,当加入pH4.8的酸性乙酸钾降低溶液pH值,使溶液pH值恢复较低的近中性水平时,质粒的两条小分子单链可迅速复性恢复双链结构,但是主染色体DNA则难以复性。在离心时,大部分主染色体与细胞碎片,杂质等缠绕一起被沉淀,而可溶性的质粒DNA留在上清夜中。再由异丙醇沉淀、乙醇洗涤,可得到纯化的质粒DNA。碱裂解法提取的质粒DNA可直接用于酶切、pcr扩增、银染序列分析等。 各试剂的作用: 1、溶液:pH8.0 GET缓冲液(50mmol葡萄糖,10mmol/LEDTA,25mmol/L TrisHCl);溶液可成批配制,在10 lbf/in2(6.895x104Pa)高压下蒸气灭菌15min,贮存于。葡萄糖的作用是使悬浮后的大肠杆菌不会很快沉积到管子的底部,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。EDTA是Ca2 和Mg2等二价金属离子的螯合剂,在溶液I中加入EDTA,是要把大肠杆菌细胞中的二价金属离子都螯合掉。从而起到抑制DNase对DNA的降解和抑制微生物生长的作用。 2、溶液:0.2mol/LNaOH(内含1%的SDS),这个用的时候需现配。要新配置溶液是为了避免NaOH接触空气中的CO2而减弱了碱性。NaOH是最佳溶解细胞的试剂。不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会在瞬间溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化。用不新鲜的0.4 N NaOH,即便有SDS也无法有效溶解大肠杆菌。SDS是离子型表面活性剂。它主要作用是:a溶解细胞膜上的脂质与蛋白,从而破坏细胞膜。b解聚细胞中的核蛋白。c能与蛋白质结合成为R-O-SO3-R-蛋白质的复合物,使蛋白质变性而沉淀下来。SDS能抑制核糖核酸酶的作用,所以在接下来的提取过程必须把它去除干净,以便下一步试验的更好进行。 3、溶液:pH4.8乙酸钾溶液(60ml 5mol/L KAc,11.5ml冰醋酸,28.5mlH2O);该溶液钾离子浓度为3mol/L,醋酸根离子浓度为5mol/L.pH4.8的乙酸钾溶液是为了把抽提液的pH调至中性,从而使变性的质粒DNA复性,且稳定存在。溶液III加入后的沉淀实际上是K+置换了SDS中的Na+形成了不溶性的PDS,而高浓度的盐有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚,使得沉淀更完全。前者是因为中和核酸上的电荷,减少相斥力而互相聚合,后者是因为盐与SDS蛋白复合物作用后,能形成较小的盐形式复合物。 4、异丙醇;采用PEG(6000)沉淀DNA,大小不同的DNA分子所用的PEG的浓度也不同,PEG的浓度低,选择性沉淀DNA分子量大,大分子所需PEG的浓度只需1%左右,小分子所需PEG浓度高达20%。5、无水乙醇:乙醇可以以任意比和水相混溶,而DNA溶液是DNA以水合状态稳定存在,同时乙醇与核酸不起化学反应,因此是理想的沉淀剂。加入的乙醇后,乙醇会夺去DNA周围的水分子,DNA失水聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%左右。也可改用95%乙醇来替代无水乙醇。但是加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。折中的做法是初次沉淀DNA时可用95%乙醇代替无水乙酵,最后的沉淀步骤要使用无水乙醇。也可以用0.6倍体积的异丙醇选择性沉淀DNA。一般在室温下放置1530min即可。但因为使用异丙醇时常把盐沉淀下来,所以较多的还是使用乙醇。 6、pH8.0TE缓冲液;10mmol/LTrisHCl,1mmol/L EDTA,其中含 RNA酶 20g/ml。在基因操作实验中,选择缓冲液的主要原则是考虑DNA的稳定性及缓冲液成分干扰作用。磷酸盐缓冲系统(pKa7.2)和硼酸系统(pKa=9.24)等虽然也都符合细胞内环境的生理范围(pH),可作DNA的保存液,但在转化实验时,磷酸根离子的种类及数量将与Ca2+产生Ca3(PO4)2沉淀;在DNA反应时,不同的酶对辅助因子的种类及数量要求不同,有的要求高离子浓度,有的则要求低盐浓度,采用Tris-HCl(pKa=8.0)的缓冲系统,由于缓冲液是TrisH+/Tris,不存在金属离子的干扰作用,故在提取或保存DNA时,大都采用Tris-HCl系统,而TE缓冲液中的EDTA更能稳定DNA的活性。酚与水有一定的互溶,苯酚用水饱和的目的是使其抽提DNA过程中,不致吸收样品中含有DNA的水分,减少DNA的损失。 用Tris调节至pH为8是因为DNA在此条件下比较稳定。在中性或碱性条件下(pH57),RNA比DNA更容易游离到水相,所以可获得RNA含量较少的DNA样品。 7、70%乙醇 试验步骤: 1、无菌操作台上,取1.5ml培养菌体置于离心管(Eppendorf管)中,微量离心机上以10000rpm离心1min,或者以4000rpm离心510min,弃上清液,离心管倒扣于干净的吸水纸上吸干。 2、沉淀中加100l用冰预冷的溶液I,加或不加入少量溶菌酶粉末,充分混合(需要剧烈振荡)。室温下放置10min。 3、加入200l溶液 II(新鲜配置),加盖后轻轻快速颠倒离心管数次混匀(千万不要振荡),冰浴5 min 。 4、加入150l预冷溶液III,轻轻颠倒数次混匀(10s),置于冰浴15 min 。 5、微量离心机上以4,12000rpm离心15min,取上清液于另一新Eppendorf管中。 6、上清夜中加入等体积酚/氯仿(1:1)混匀,微量离心机上以4,12000rpm,离心5min。经验之谈:如果选用宿主合适的话(如 DH5a、XL1-red等,HB101和BL21则不行),可以不用酚氯仿抽提这一步。用1倍体积的乙醇沉淀,沉淀中所含的盐和RNA就很少了,完全去除上清液后就可以直接加TE溶解质粒,后续的限制性酶切、转化完全没有问题。仅供参考 7、小心转上层至一新的离心管弃去中层的蛋白质和下层的有机相。 8、小心移出上清于一新Eppendorf管中,加入2 /3倍体积异丙醇,混匀,4离心12000g5min。 9、上清夜中加入2倍体积的无水乙醇混匀,室温下放置5min10min,以12000rpm,离心5min-15min。 10、1.0ml预冷的70%乙醇洗涤沉淀1 2次,沉淀在室温下晾干。 11、小心吸去上清夜,将离心管倒置于一张纸上,使所有的液体流出。再将附着在管壁上的液滴除去。在除去管壁上的液滴时,可以用一次性吸头与真空管相连,用吸头接触液面。但在液体吸出时应当尽量使吸头远离核酸沉淀。自然干燥或者真空抽干到看不到液滴最好。 12、加入50lTE缓冲液(PH 8.0 含20g/mlRNaseA)溶解质粒粗提物,在-20保存。 注意事项: 提取过程应尽量在低温环境中进行,蛋白质的去除以酚/氯仿混合效果最好,可以采取多次抽提尽量将蛋白质除干净,在沉淀DNA 时通常使用冰乙醇,在低温条件下放置可使DNA沉淀完全。同时反应中加入的盐浓度一定要控制好,当加入的盐溶液浓度太低时,只有部分DNA形成DNA钾盐而聚合,这样就造成DNA沉淀不完全,当加入的钾溶液浓度太高时,其效果也不好。在沉淀的DNA中,由于过多的盐杂质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀。一般情况下都是加入的最终浓度达0.10.25mol/L为宜。溶液I中各成分的作用葡萄糖是使悬浮后的大肠杆菌不会快速沉积到管子的底部,因此有些试剂厂商的溶液I没有葡萄糖成分;EDTA是Ca2+;和Mg2+等二价金属离子的螯合剂,其主要目的是为了螯合二价金属离子从而达到抑制DNase的活性。溶液II中各成分的作用NaOH主要是为了溶解细胞,释放DNA,因为在强碱性的情况下,细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的变化;但NaOH易和空气中的CO2发生反应,形成碳酸钠,降低了NaOH的碱性,所以必须用新鲜的NaOH。SDS与NaOH联用,其目的是为了增强NaOH的强碱性,同时SDS能很好地结合蛋白,产生沉淀。这一步要记住两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA会断裂。溶液III中各成分的作用溶液III中的醋酸钾是为了使钾离子置换SDS中的纳离子而形成了PDS,因为十二烷基硫酸钠(sodiumdodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾 (potassium dodecylsulfate, PDS),而PDS是不溶水的,同时一个SDS分子平均结合两个氨基酸,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了。2 M的醋酸是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和。基因组DNA一旦发生断裂,只要是50100 kb大小的片断,就没有办法再被 PDS共沉淀了,所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。75%酒精主要是为了清洗盐份和抑制Dnase;同时溶液III的强酸性也是为了使DNA更好地结合在硅酸纤维膜上。得到的质粒样品一般用含RNase(50 ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的。琼脂糖电泳进行鉴定质粒DNA时,多数情况下你能看到三条带,但千万不要认为你看到的是超螺旋、线性和开环(环装质粒一条单链发生缺刻)这三条带(泳动速度:共价闭合环状线性开环)。碱法抽提得到质粒样品中不含线性DNA,不信的话你用EcoRI来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA的位置与这三条带的位置不一样。其实这三条带以电泳速度的快慢而排序,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起)。如果你不小心在溶液II加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100 kb的大肠杆菌基因组DNA的片断。所有的质粒抽提方法首先都要考虑如下几点:如何去除 RNA,如何将质粒与细菌基因组 DNA 分开,如何去除蛋白质及其它杂质。去除 RNA 相对比较简单,首先是使用 RNase 消化 (抽提中或者抽提后)。经过 RNase 消化后,RNA 变得比较小了,其残留对酶切反应几乎没有影响。如果要彻底去除残留得 RNA,则需要更烦琐的操作。将质粒与细菌基因组 DNA 分开,基本上是采用两种办法:一是利用酶/弱去污剂部分裂解细菌,在抽提时只让质粒从细菌中释放出来,而不让基因组 DNA 从细菌中出来,从而将质粒和基因组 DNA 分开;二是利用 NaOH/SDS 完全裂解细菌,让质粒和细菌基因组 DNA 都从细菌中出来,再利用质粒和基因组 DNA 在变性/复性过程中的不同表现,将质粒与基因组 DNA 分开。去除蛋白质及其它杂质,基本上是与去除细菌基因组同时实现的。但是,依据不同的细菌,不同的培养条件,以及操作时的精细程度等,杂质的残留量会不同。所以,通常需要使用苯酚做更进一步的纯化。经过上面的处理,沉淀下来的质粒基本上可以用于酶切了。如果要用于更高级的实验,如转染,则需要做进一步的纯化,如 CsCl 超离心。 实验前方法/试剂的选择首选方法是碱裂解法。如果有问题,或者是大质粒 (15 kb),则用温和的方法 SDS 裂解法。详细情况见“分子克隆”。试剂盒几乎都使用碱裂解法,所以都有一个通病,抽提大质粒时效果不好。关于碱裂解法质粒抽提最常用的方法是碱裂解法,它具有得率高,适用面广,快速,纯度高等特点。当然,碱裂解法也有缺陷:容易导致不可逆的变性;不适合大质粒的抽提。碱裂解法是很剧烈的方法,质粒在碱性条件下会变性,时间一长,这种变性就成为不可逆的了 (电泳时在超螺旋前面一点点,如果有一条带,就是此变性的质粒。)。所以,要降低不可逆的变性,就要控制好碱裂解的时间。(似乎可以做这么一个推理:在碱性条件下,质粒的两条链从一点或者几个点开始分开,随着时间的延长,直到完全分开。理论上讲,完全分开的两条链要很快地配对复性,成功率肯定不可能是 100%的,而没有完全分开的两条链却完全可能 100% 配对复性) 碱裂解法不适合大质粒的抽提,原因也是因为该方法太剧烈,使超螺旋比例较低。文献推荐的抽提大质粒的方法是温和得多的方法,缺点是得率要低一些。现在得问题是,大质粒的拷贝数本来就低,如果抽提方法得率再不高的话,抽提起来就很费力了。如果注意到在碱裂解法中,超螺旋比例随着碱裂解时间的延长而降低,随着粘稠度的增加而减低这个现象,完全可以使用碱裂解法来抽提大质粒的:增加试剂的使用量,使加入NaOH/SDS液后,溶液在1分钟内就能变得很清澈;立即加入中和试剂。 质粒抽提的 8 大窍门1:摇菌时间。过夜培养是一个普遍接受的概念,而且适合大部分情况。如果出现了问题,调整培养时间会有帮助:Nick 多,则增加培养时间;酶切出现问题,则减少培养时间。2:起始菌体量。大家习惯说“从多少 ml 菌液中抽提质粒”,但一定要养成每次都观察菌体量的习惯,因为质粒毕竟是在菌体中,而且,抽提质粒所用的试剂量,都只与菌体量有关。3:菌体的彻底悬浮。如果没有彻底悬浮菌体,则残留的菌体团块在溶液 II 加入后,变成一个外围几乎彻底裂解,往里不完全裂解,中间没有裂解的团块。这个团块在溶液 III 加入后,会有一部分蛋白质继续存在于溶液中,成为蛋白质残留的最大根源。4:使用相对过量的试剂。这是适合所有核酸抽提的建议。试剂相对过量的好处是:稳定性好,纯度高,操作更简单。如果认为这样不经济,就少用一点菌体。5:裂解时间。加入溶液 II 后,混匀,体系最好能立即变得清澈。体系如果变得清澈了,马上加入溶液 III 中和。如果体系不马上变清澈,下次少用一点菌液,或者多用一点溶液。如今的质粒设计得越来越复杂了,奇怪的现象也越来越多,而所有的奇怪现象,多与裂解时间有关。6:中和的操作。在 1.5ml 离心管中加入溶液 III 后,先颠倒两次,使管底朝上,用指头弹击管底数次,再颠倒混匀。效果非常好。7:中和后的离心去蛋白。一定要将蛋白质彻底离心下去。如果发现离心后仍然有蛋白质漂浮在液面,继续离心的效果并不好;而将上清倒入另外一个离心管中,再离心,效果要好许多。降低 RNA 残留的方法RNA 的去除,首先是使用 RNase 消化。在溶液 I 中加入高浓度的 RNase A (100ug/ml),或者用含 25ug RNase A/ml TE 溶解抽提好的质粒,都可以降低 RNA 残留,但都不能彻底去除。幸运的是,RNA 的残留并不影响酶切等最常用的用途。如果想彻底去除 RNA 残留,可以用试剂盒,或者使用对 4 个碱基都作用的 RNase。降低 gDNA 残留的方法gDNA 的残留问题,必须在抽提过程中解决,否则,就只能用胶回收方法处理了。gDNA 越大,越难于复性,也就越容易被去除;所以,一定要尽可能不打断 gDNA。裂解体系越粘稠,gDNA 越容易被扯断;操作手法越重,gDNA 也越容易被打断。温和操作,使用相对过剩的试剂,是降低 gDNA 残留的最好方法。降低蛋白质残留的方法蛋白质的去除,主要是靠不溶解的 K-SDS-蛋白质复合物的形成。虽然将中和后的体系置于4一段时间,可以形成更多的该不溶复合物,从而使蛋白质残留更少,但实践证明这样做并不是必须的,除非是大量抽提。只要加入溶液 I 后的悬浮,加入溶液 II 后的裂解及加入溶液 III 后的中和是均匀彻底的,蛋白质的残留就应该在可以满足实验要求的水平;而只有溶液的用量足够,甚至过剩,才能确保裂解和中和是彻底的。当然,试剂盒及苯酚的使用,是可以更进一步降低蛋白质的残留的。降低质粒 Nick 的方法细菌收获时间,菌株的选择,抽提操作的剧烈程度是影响 Nick 的三个主要因素。细菌收获过早,质粒还在复制过程中,Nick 的比例较高;过晚,细菌开始死亡,杂质会比较多。如果使用胞内酶含量很高的宿主菌,会出现较高比例的 Nick。加入溶液 II 及加入溶液 III 的混匀操作,也可以导致一些 Nick,但影响不会比前两者大。降低变性超螺旋的方法理论上,用碱裂解法抽提质粒,变性超螺旋的出现是不可避免的。之所以大家没有非常在意,一是因为它的存在似乎对酶反应没有任何影响,二是因为它的含量并不一定高到被用电泳观察到。抽提使用相对过剩的溶液,在加入溶液 II 后,体系能在 1 分钟内变澄清,再快速加入溶液 III,这样基本上能将变性超螺旋的出现控制在电泳看不见的水平。 (变性超螺旋电泳时比正常超螺旋跑得快一点点。)关于质粒多聚体QIAGEN 提供了一个没有进一步解释的观察:从有些宿主菌中抽提质粒 (pTZ19),电泳能发现很多条带;但使用单酶切后,仍然变成一条带,大小正好是线性单质粒的大小。根据这一观察,可以推理如下:那些大的条带(质粒多聚体)是由完整的单质粒“粘”在一起形成的,而不是我的一条链与你的一条链复性在一起;第二,这种“粘”只是部分的,否则酶切会有问题;第三,这种“粘”是脆弱的,线性后的刚性足以打破它。如果是这样,质粒多聚体的出现与质粒的结构及序列有关,可以不管它(也管不了),因为它不影响酶切,或者说,即使质粒多聚体切不动,也不会影响太大。总之,碰到这种情况,不要简单地认为有问题,而是应该一步一步往下做,但一定要做完一步,检测一次,看一看结果与预期的吻合程度。提高得率的方法利用氯霉素抑制染色体的复制,而不抑制质粒的复制这一特点,在低拷贝质粒的培养过程中添加氯霉素可以大大提高得率。 为什么酶切后质粒总是降解?酶切后质粒降解的原因很多,但如果用实验方法排除了质粒的质量及酶的质量因素后 (用 A 酶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论