已阅读5页,还剩105页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4活化能与元反应速率理论简介 一 阿伦尼乌斯方程 温度对反应速率的影响范特霍夫规则 纯经验关系式 范霍夫根据大量的实验数据总结出一条经验规律 温度每升高10K 反应速率近似增加2 4倍 即 如果温度的变化范围不是很大 可看成常数 例如 若 则 在化学平衡原理一章中讲过范特霍夫方程j 范特霍夫没解决 Arrhenius提出j 0 导出Arrhenius方程 该式称为Arrhenius方程微分式 表明速率常数k值随温度T的变化率决定于Ea值的大小 Arrhenius方程对数式 表明速率常数k与T 1之间呈线性关系 可以根据不同温度下测定的k值 以lnk对T 1作图 从而求出活化能Ea Arrhenius方程指数式 描述了速率常数k与温度T的指数关系 阿仑尼乌斯认为A和Ea都是与温度无关的常数 Arrhenius方程定积分式 设活化能与温度无关 根据两个不同温度下的k值求活化能 Ea 活化能 A 指前因子 频率因子Arrhenius方程适用范围较广 只要速率方程为幂函数形式即可 但Ea只对元反应有物理意义 二 基 元反应活化能 activationenergy 1 Arrhenius反应速率理论假设 1 只有活化分子碰撞才是有效碰撞 2 活化分子的平均能量与普通分子的平均能量差称为活化能 3 活化分子碰撞先形成 中间 活化状态 然后形成产物 4 活化能与温度无关 与反应性质有关 5 指前因子与分子的碰撞频率有关 2 活化能的意义化学反应是一个破 旧 键 立 新 键 过程 破旧 需要能量 立新 可以释放能量 体系状态变化都是 破旧立新 其能量变化是类似的 如图 竖立 横卧 从热力学角度看 重心降低的过程是自动过程 实际操作中 重心是先升后降 非自动 先 升 提高势能 需要能量 非自动 后 降 降低势能 放出能量 自动 化学反应 能峰图 活化能 从抽象变形象 Ea Ea Q 反应热效应 作用物跨越 能峰 产物 能峰 高低 活化能 能峰 只适于元反应 Ea400kJ mol 1 反应困难 多数反应 40kJ mol 1 Ea 400kJ mol 1 微观可逆性原理 元反应的逆反应也必定是元反应并且正 逆反应进行时 必须通过相同的过渡状态 正 逆反应途径相同 只是反应方向不同而已 表观活化能与基元反应活化能的关系决定于基元反应的速率系数与表观速率系数之间的关系 而这个关系从反应机理推导而得 阿氏方程对有非幂函数速率方程的反应不适用 所以推断温度对反应速率的影响形式多样 P385图给出实验获得的几种典型关系示意图 温度对反应速率影响的五种常见类型 实验结果 4 活化能的作用对元反应而言 反应活化能低 活化分子就多 则反应快 反之 反应慢 严格Ea应与温度有关 由三参量经验式 P383 得 Ea E mRT E与温度无关 则 而对复杂反应而言 则不能简单地以活化能大小推断反应速率的快慢 此时活化能的作用是其大小决定了温度对反应速率的影响程度 活化能大 反应对温度敏感 因为 dlnk dT Ea RT2 改变温度可以改变反应速率 改变活化能反应速率变化更明显 热活化 光活化 机械活化 电活化 实质 改变反应途径 温度不变时 活化能对速率的影响设两个反应的指前因子A1和A2相等 但是活化能 相差5kJ mol 1 相差10kJ mol 1 则在300K时由阿仑尼乌斯公式得 情况 相差约7倍 情况 相差约55倍 一般基元反应活化能为40 400kJ mol 1 而10kJ mol 1只占该数值的2 5 25 可见 若能略为降低活化能 就可大大提高反应速率 活化能对反应速率的影响还与反应温度有关 与反应类型有关 下面分别加以讨论 温度不同时 活化能对速率的影响 设Ea 3 Ea 2 Ea 1 作lnk 1 T图 直线斜率为 Ea R 则 对同一反应 k随T的变化在低温区较敏感 以反应2为例 下表给出lnk增加1倍时 高 低温度段的变化值 对不同反应 Ea越大 k随T的变化也越大 例如 Ea 3 Ea 2 平行反应的温度选择原则 如果Ea 1 Ea 2 升高温度 k1 k2也升高 对反应1有利 反之对对反应2有利 如果有三个平行反应 主反应的活化能又处在中间 则不能简单的升高温度或降低温度 而要寻找合适的反应温度 由反应的实验活化能验证反应机理 如直链反应H2 Cl2 2HCl实验测定的速率方程为 其反应机理及相应元反应活化能如下 由反应机理导出的表观速率常数为 则其表观活化能为 Ea Ea 2 0 5 Ea 1 Ea 4 146 5kJ mol 1如果从反应机理导出的速率方程和表观活化能与实验值相符 说明反应机理是正确的 1 吸热反应 rHm 0 T K k1 k 1 利于正向反应2 放热反应 rHm 0 T K k1 k 1 不利于正向反应 三 热力学和动力学对r T关系讨论的比较 热力学观点有van tHoff方程 通常活化能总为正值 T 正向反应速率总是增加 因此 对于放热反应 实际生产中 为了保证一定的反应速率 也适当提高温度 略降低一点平衡转化率 如合成氨反应 动力学观点有Arrhenius方程 四 阿伦尼乌斯方程的应用 求实验活化能 图解法 计算法 P384以lnk对T 1作图或线性回归 直线的斜率 Ea R对元反应求出活化能对非元反应求出 实验 表观活化能注意 表观活化能无 能峰 的意义 已知活化能值和某一温度 T1 下的速率常数 k1 则可求出另一温度 T2 下的速率常数 k2 定积分式 教材P384以范特霍夫规则为例 取T1 300K T2 310K 1 2 2 4代入下式解得 Ea 1 53 6kJ mol 1 Ea 2 107 2kJ mol 1 四 简单碰撞理论 SCT 1 双分子碰撞理论设双分子反应 F 产物理论要点 反应物分子无内部结构和内部自由度的刚性球 相互无作用 碰撞完全弹性 反应分子必须通过碰撞才可能发生反应 反应速率与碰撞频率成正比 碰撞未必反应 活化碰撞才有效 活化碰撞 碰撞分子对的能量达到或超过某一定值 0 称为阈能 时 反应才能发生 在反应过程中 反应分子的速率分布始终遵守Maxwell Boltzmann分布 反应速率为单位时间单位体积内的有效碰撞数 根据气体分子运动理论 单位体积内 单位时间作用物分子碰撞次数称为碰撞数 Z 异种分子碰撞碰撞数为 q为有效碰撞分数 由能量分布定律得 与三参量公式比较 P386 m 即Ea Ec RT 同种分子碰撞碰撞数为也得 A T1 2 2 单分子碰撞理论实际确实存在单分子反应 如 C2H5F C2H4 HF单分子反应的一般表达为 A P r k1cA A E 和k 高压极限条件下的A E和k Lindemann等提出时滞 time lag 理论 多原子分子A是经过与另一分子的碰撞而活化 活化分子A 需要时间进行分子内部能量传递 两种可能 完成反应 或失去活性无论是用稳态近似 还是平衡近似 总有 当k3 k2cM时 k k1cM r kcMcA 低压 cM小 二级特征 以产物浓度随时间的变化表示反应速率 有 高压 低压 单分子反应速率的级数发生降变 Lindemann机理特征 2 对碰撞理论的评价碰撞理论能较好地用于气体反应 能解释指数律 说明速率与反应物粒子碰撞频率有关 并赋予公式中各个符号明确的物理意义 阿氏公式得 lnk 1 T 呈线性关系 硬球碰撞理论得 ln k T1 2 1 T 呈线性关系 Ec 发生化学反应的最小临界能 Ec L 0Ea 两个平均能量的差值 对于简单的反应用该理论计算得到的速率常数值与实验值基本一致 但是 该理论也存在很大的局限性 主要表现为 计算速率常数k需要知道E 而碰撞理论本身不能确定E的大小 需要借助指数定律求E 碰撞理论关于 硬球 的假设过于简单 没有考虑分子的结构 因此对复杂的反应 理论计算值与实验值相差很大 许多反应 k理论 k实验 即 A理论 A实验 为弥补这种不足 引入 因子P 进行校正 分析实际反应过程 有以下因素在碰撞理论的假设中没考虑 其值一般在10 1 10 4之间 P 方位因子 不是能量因素 是构型因素 某些双分子反应的动力学参量表 关于简单碰撞理论 说明了频率因子的概念 A f 碰撞次数或碰撞频率 适用于气体或液体的简单反应 单分子 双分子 三分子反应 缺陷 k从实验获得 半经验 对复杂分子反应 计算值与实验值有相当误差 引入的校正因子意义不明 五 过渡状态理论 TransitionStateTheory 1 理论要点 当两个具有足够能量的作用物分子相互接近时 分子的价键要经过重排 能量重新分配 形成一种介于作用物和产物之间的以一定构型存在的过渡状态络合物 形成过渡态需要一定的活化能 使过渡状态络合物与反应物分子之间建立化学平衡 总的反应速率由过渡状态络合物转变成产物的速率决定 反应物分子之间相互作用的势能是分子之间相对位置的函数 在反应物转变成产物的过程中 体系的势能不断变化 过渡状态络合物处在势能的马鞍点上 各状态势能与质点间距离有关 严格说是三角 见教材 u u rBE rEX rBX 通常简化成线性 u u rBE rEX 图中M点是反应物BE分子的基态 随着X原子的靠近 势能沿着RM线升高 到达M点形成活化络合物 随着B原子的离去 势能沿着MP线下降 到M点是生成物EX分子的稳态 D点是完全离解为E B X原子时的势能 u r 轴一侧是原子间的相斥能 也很高 rEX BE X R M B EX rBE u r B E X 势能面 马鞍点 saddlepoint 在势能面上 活化络合物所处的位置M点称为马鞍点 该点的势能与反应物和生成物所处的稳定态能量R点和P点相比是最高点 但与坐标原点一侧和D点的势能相比又是最低点 如把势能面比作马鞍的话 则马鞍点处在马鞍的中心 从反应物到生成物必须越过一个能垒 可见 R M P是能量最低的反应途径 M 2 对过渡状态理论的评价 过渡状态理论将反应物分子的微观结构与反应速率联系起来 不但提供了理论上计算活化能和活化熵的可能性 而且还可以近似求得碰撞理论无法求得的 方位因子P 但是 过渡状态物的结构不易确定 因此在很大程度上具有猜测性 再加上计算太复杂 实际应用还存在较大的困难 一 液相反应相对而言 液相反应较复杂 因为气态分子间相互作用力可忽略 而且可借助分子运动理论描述 晶 固 态分子的质点排列有序 易于数学描述 而液相分子介于气 固分子存在形态之间 且反应介质 溶剂对反应也有影响 第五节液相反应和多相反应动力学简介 1 溶剂对反应速率的影响 物理效应溶剂在反应的过程中 无明显的变化 它的存在对某些反应的反应速率没有影响 仅仅是起到介质的作用 此种情况称为溶剂的 物理效应 比如 离解 传质 传能 介电性等 在动力学讨论和化学计量方程中可以不考虑溶剂的作用 化学效应溶剂在反应的过程中 对某些反应的反应速率有很大的影响 甚至参与化学反应过程 其中有的反应结束时 溶剂又重新出现 有的则不再恢复 此种情况属于溶剂的 化学效应 在速率方程中应加于考虑 如反应N2O5 2NO2 0 5O2在不同溶剂介质中的反应动力学参数列于下表 Menschutkin型反应 如季胺盐形成反应 C2H5 3N C2H5I C2H5 4N I 373K下 不同溶剂中季胺盐形成反应的动力学参数 2 笼效应 cageeffect 在溶液反应中 溶剂是大量的 溶剂分子环绕在作用物分子周围 好像一个笼子 但在 笼 中的作用物分子不会一直留在其中 一般停留时间 10 12 10 10秒 在这段时间内的碰撞次数 100 1000 在同一笼中的作用物分子进行多次碰撞 其碰撞频率并不低于气相反应中的碰撞频率 因而发生反应的机会也较多 这种现象称为笼效应 一次遭 偶 遇 oneencounter 作用物分子处在某一个溶剂笼中 发生连续重复的碰撞 称为一次遭 偶 遇 直至作用物分子挤出溶剂笼 扩散到另一个溶剂笼中 在一次遭遇中反应物A和B成为一个遭 偶 遇对 在一次遭 偶 遇中 作用物分子有可能发生反应 也有可能不发生反应 无论何种情况 遭遇对在 笼 中就会构成一种过渡态的中间产物 将上述反应的机理分析用下列基元反应来表示 可以假设反应达到稳定时 遭遇对的浓度不随时间而改变 由稳态法得 由上述关系式可求得 若反应步骤的Ea较大 一般在80kJ mol 1 就有k d kr 则整个反应由化学反应步骤控制 叫活化控制反应 若反应步骤的Ea较小 如在多数有机溶剂中 约10kJ mol 1 就有k d kr 则整个反应由扩散步骤控制 叫扩散控制反应 因此 总包反应的速率可表示为 其中 3 过渡状态理论的应用A B A B P非电解质溶液 溶剂S中的标准活化自由能 基准溶剂中的标准活化自由能 对电解质溶液 而 298K水溶液中 结合D H极限公式得 可见溶剂对反应速率的影响是十分复杂的 主要有 溶剂介电常数的影响介电常数大的溶剂会降低离子间的引力 不利于离子间的化合反应 溶剂极性的影响如果生成物的极性比反应物大 极性溶剂能加快反应速率 反之亦然 溶剂化的影响作用物分子与溶剂分子形成的化合物较稳定 会降低反应速率 若溶剂能使活化络合物的能量降低 就能降低活化能 使反应加快 离子强度的影响离子强度会影响有离子参加的反应速率 会使速率变大或变小 这就是原盐效应 因此溶液反应动力学的研究也往往分别关注溶剂的物理效应和化学效应 二 多相反应反应体系中存在两个或两个以上的相 反应物存在于这些相中 反应通常发生在 相 界面层中 如固 气 固 液 液 气 液 液 等界面 反应步骤 作用物由气体或液体本体向相之间的界面扩散 或作用物通过固体孔隙或裂缝深入到固体内部的扩散 作用物在相界面上发生物理吸附和化学吸附 在相界面上发生化学反应并生成吸附态的产物 生成物解吸 生成物通过内扩散和外扩散离开反应界面并向流体内部传递 五个步骤又可规划为两类 为界面化学反应 和 为扩散过程 由多相反应的步骤可知 它相当于一个连串反应类型的复杂反应 因此 多相反应的总速率决定于最慢一步的速率 即r r慢 在不同的条件下 多相反应中的每一个步骤都有可能成为过程的控制步骤 因此多相反应在不同的条件下 常常表现出不同的动力学特征 在多相反应中 若扩散步骤最慢r r扩散 则称多相反应处在扩散区或扩散控制 若界面化学反应步骤最慢r r反应 则称多相反应处在动力学区或化学反应控制 若多相反应中各个步骤的速率接近 则称多相反应处于过渡区或混合控制 因为E扩散 E反应 所以条件改变 控制步骤可改变 如T 时 r反应增加得多 而r扩散增加得少 反应特征 反应在界面上进行 扩散过程必不可少 影响因素 反应速率不但与反应物的浓度 反应温度有关 而且与反应体系是否存在流动或搅拌 接触界面面积大小和界面性质有关 界面面积越大 或分散度越大 则越有利于多相反应 反应特征 反应在界面上进行 扩散过程必不可少 影响因素1 反应物的浓度 2 相界面的大小和性质 单位体积 质量 的界面大有利于反应 3 扩散速率 影响界面处反应物的浓度 体现在是否存在流动或搅拌 4 热交换速率 影响界面处反应的温度 1 多相反应速率的扩散理论 扩散控制的多相反应 扩散理论要点 形成扩散层作用物 csc0 ZnO 2H H2O Zn2 2Al 1 5O2 Al2O3Cu 0 5O2 CuO 在扩散层中存在浓度梯度浓度梯度方向与扩散方向相反 总反应速率与扩散速率相等 r r扩 速率方程 D 扩散系数 由物质本性与T决定 单位 m2 s 1As 界面面积 V 液相 气相 体积 若扩散层内浓度为均匀分布 则 扩散层厚度 c 扩散层两侧浓度差 讨论 r As多相反应的速率与反应物的总表面积成正比 当固体反应物一定时 比表面积愈大 多相反应的速率就愈大 r 1多相反应的速率与扩散层厚度成反比 一般水溶液中的s l界面 3 10 3cm r c多相反应的速率与反应物在扩散层之间的浓度差成正比 对作用物而言 c c0 cs若反应速率较大 扩散为控制步骤 则cs 0 c c0最大 提高c0 r增加对产物而言 c cs c0 若不断取走产物 c0 0 则 c cs最大 可提高r r D多相反应的速率与扩散系数D成正比 而扩散系数与反应物的性质和体系温度有关 一般T D 阿仑尼乌斯公式可以求出扩散步骤控制的多相反应的活化能 即扩散过程的活化能 该值小于一般化学反应活化能 因此 改变温度对扩散控制的多相反应速率影响不太大 2 多相反应的吸附理论 化学反应控制的多相反应 吸附理论要点 反应只发生在被界面吸附的粒子间 吸附和扩散均为快步骤 反应速率取决于界面化学反应 即取决于被吸附粒子的浓度 界面化学反应为元反应 所以服从质量作用定律 r knAscn 速率方程 讨论根据上述速率方程式可知r f k1 m As p 与物质的特性 固体物质 催化剂 或固体反应物的总表面积有关 不同的物质 不同的反应 m b等不同 As k1 r 与温度有关 温度升高 反应速率加快明显 因为T k1 r 界面化学反应步骤控制的多相反应的活化能大小与一般化学反应的活化能的数值相当 约为40 400kJ mol 1 因此 温度影响较为明显 与搅拌强度等流动因素关系不大 特征 此时扩散阻力较小 扩散为快步骤 与气体反应物的压强或浓度有关 关系如图7 18 P398 所示 这种曲线具有与一般类型 型 吸附等温线相同的形状 是一级界面化学反应步骤控制的固 气多相反应所特有的 也是常见的多相 催化反应所特有的 压强低 p小 吸附弱 b小 时 bp 1 则 r k1 即 r p0 p b适中时 应该有 r p0 1即 r k p1 n n 1 如 PH3以W为催化剂的分解反应 883 993K p 130 660Pa r k p 0 13 1 3Pa r kp p 0 260Pa r kp 1 bp 特别注意 界面化学反应步骤控制的多相反应速率与搅拌 流动等外部因素无关 因此可作为判据 某反应是否属于界面化学反应步骤所控制 4 收缩核动力学模型 固 液反应 无残渣ZnO s 2H aq H2O l Zn2 aq 固 气反应 有致密残渣2Al s 1 5O2 g Al2O3 s 固 气反应 残渣疏松3Fe s 2O2 Fe3O4 特点是 反应界面大小随反应进行而发生变化 对留有残渣层的反应而言 其扩散阻力也随反应进行而增加 因此 反应速率方程复杂 求解也复杂 5 金属氧化Me 0 5O2 MeO 氧化膜 膜多孔稀疏 扩散易 界面反应为速控步 膜致密 扩散难 扩散为速控步 介于两者之间 为混合控制r扩散 r反应 设界面面积不变 氧化物厚度y 则 速率方程为 6催化反应动力学 一 催化 catalysis 的概念 1 催化的定义催化作用加入某物质 能显著改变反应速率的作用 催 阻 化剂存在少量就能显著加快 降低 反应速率 而本身最后并无消耗的物质 自催化作用反应产物之一对反应本身起的催化作用 自催化反应 2KMnO4 5H2C2O4 3H2SO4 2MnSO4 K2SO4 8H2O 10CO2473K Br2 C2H4 Br2C2H4 小玻璃容器中 反应加快 小玻璃容器内壁涂石蜡 反应停止 2 催化作用的原理多数情况下是降低了元反应的活化能 其表观活化能也因此而降低 催化反应的一般机理示意图 E1 E2 E1 E3 E 1 E 2 E 1 E 3 表观活化能可能降低 Ea E3 E2 E 2 E1 元反应活化能降低 E1 E2 E1 E3 E 1 E 2 E 1 E 3 若活化能降低不多 速率变化却很大 则可能与活化熵变化较大有关 而活化熵 隐藏 在 表观 频率因子之中 如HCOOH H2 CO2 在玻璃器皿和铑器皿中 活化能相近 反应速率却相差10000倍 正是因为铑上的活化中心的数目非常大 从而改变了活化熵 P391 式 7 67 3 催化作用的类型 均相催化 多相催化 生物催化或者称酶催化4 催化作用的基本特征 催化剂能显著改变达到平衡的时间 因为催化剂参与了化学反应 为反应开僻了一条新途径 即改变了反应的历程 但可与原途径同时进行 催化剂不能改变反应的平衡规律 方向与限度 即不能改变 rGm或 rGm Kc 和 rHm 因为反应的始末态没变 改变的只是反应途径 则状态函数值不会改变 因此 只有从热力学上确定了反应的 rGm 0 才可利用催化作用改变反应速率 而Kc k k 所以 催化作用是同时 同力度改变r 和r Ag催化剂选择催化反应1 主产物为环氧乙烷 Pd催化剂选择催化反应2 主产物为乙醛 催化剂具有选择性 在催化剂或反应体系内加入少量的杂质常常可以强烈影响催化作用 这些杂质起到了助催化剂或毒物的作用 二 均相催化 又如蔗糖水解反应 为液相均相催化 NO即为气体催化剂 作用物SO2称为底物 优点 选择性高 活性高 缺点 催
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游资源数字化推广
- 重难点解析人教版八年级物理上册第6章质量与密度-质量同步测评试卷(含答案详解版)
- 旅游业务月度策略分析
- 旅游业务沟通升级
- 2025年新经典考试真题及答案
- 旅游业数字化营销解析
- 2025年初级会计职称考试试题及答案(细选)
- (2025年)注册监理工程师房建工程延续继续教育试卷及答案
- 旅游业绩解析与前瞻
- 绿色力量我们的行动
- 汉中殡葬管理办法
- 羊水过少护理个案
- GB/T 45762-2025精细陶瓷室内照明环境下半导体光催化材料测试用光源
- 医院末位淘汰管理办法
- 2025年贵南县公安局招聘警务辅助人员考试试题
- 四川省公需科目(超全):2025年度四川省专业技术人员继续教育考试题库
- 学堂在线 新闻摄影 期末考试答案
- 耳鸣患者护理课件
- 体育足球教学课件
- 期权开户测试题目和答案
- 养老护理员环境及物品清洁培训
评论
0/150
提交评论