




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学大教育幂函数 一、幂函数的定义一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.二、函数的图像和性质(1) (2) (3) (4) (5)用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出:定义域奇偶性在第象限单调增减性定点(公共点)3幂函数性质(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2)0时,幂函数的图象都通过原点,并且在0,+上,是增函数(3)0时,幂函数的图象在区间(0,+)上是减函数.三两类基本函数的归纳比较: 定义对数函数的定义:一般地,我们把函数(0且1)叫做对数函数,其中是自变量,函数的定义域是(0,+)幂函数的定义:一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.性质对数函数的性质:定义域:(0,+);值域:R;过点(1,0),即当=1,=0;在(0,+)上是增函数;在(0,+)是上减函数幂函数的性质:所有的幂函数在(0,+)都有定义,图象都过点(1,1)0时,幂函数的图象都通过原点,在0,+上,、是增函数,在(0,+)上, 是减函数。【例题选讲】例1已知函数,当 为何值时,:(1)是幂函数;(2)是幂函数,且是上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;简解:(1)或(2)(3)(4)(5)变式训练:已知函数,当 为何值时,在第一象限内它的图像是上升曲线。简解:解得:小结与拓展:要牢记幂函数的定义,列出等式或不等式求解。例2比较大小:(1) (2)(3)(4)解:(1)在上是增函数, (2)在上是增函数,(3)在上是减函数,;是增函数,;综上, (4),例3已知幂函数()的图象与轴、轴都无交点,且关于原点对称,求的值解:幂函数()的图象与轴、轴都无交点,;,又函数图象关于原点对称,是奇数,或例4、设函数f(x)x3,(1)求它的反函数;(2)分别求出f1(x)f(x),f1(x)f(x),f1(x)f(x)的实数x的范围解析:(1)由yx3两边同时开三次方得x,f1(x)x(2)函数f(x)x3和f1(x)x的图象都经过点(0,0)和(1,1)f1(x)f(x)时,x1及0;在同一个坐标系中画出两个函数图象,由图可知f1(x)f(x)时,x1或0x1;f1(x)f(x)时,x1或1x0点评:本题在确定x的范围时,采用了数形结合的方法,若采用解不等式或方程则较为麻烦例5、求函数y2x4(x32)值域解析:设tx,x32,t2,则yt22t4(t1)23当t1时,ymin3函数y2x4(x32)的值域为3,)点评:这是复合函数求值域的问题,应用换元法【同步练习】1. 下列函数中不是幂函数的是( )答案:2. 下列函数在上为减函数的是( )答案:3. 下列幂函数中定义域为的是( )答案:4函数y(x22x)的定义域是()Ax|x0或x2B(,0)(2,) C(,0)2,D(0,2)解析:函数可化为根式形式,即可得定义域答案:B5函数y(1x2)的值域是()A0,B(0,1) C(0,1) D0,1解析:这是复合函数求值域问题,利用换元法,令t1x2,则y1x1,0t1,0y1答案:D6函数y的单调递减区间为()A(,1)B(,0) C0,D(,)解析:函数y是偶函数,且在0,)上单调递增,由对称性可知选B答案:B7若aa,则a的取值范围是()Aa1Ba0 C1a0 D1a0解析:运用指数函数的性质,选C答案:C8函数y的定义域是 。解析:由(152xx2)30152xx203x5答案:A9函数y在第二象限内单调递增,则m的最大负整数是_解析:m的取值应该使函数为偶函数故m1答案:m110、讨论函数y的定义域、值域、奇偶性、单调性,并画出图象的示意图思路:函数y是幂函数(1)要使y有意义,x可以取任意实数,故函数定义域为R(2)xR,x20y0(3)f(x)f(x),函数y是偶函数;(4)n0,幂函数y在0,上单调递增由于幂函数y是偶函数,幂函数y在(,0)上单调递减(5)其图象如下图所示11、比较下列各组中两个数的大小:(1),;(2)0.71.5,0.61.5;(3),解析:(1)考查幂函数y的单调性,在第一象限内函数单调递增,1.51.7,(2)考查幂函数y的单调性,同理0.71.50.61.5(3)先将负指数幂化为正指数幂可知它是偶函数,又,点评:比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小12已知函数y(1)求函数的定义域、值域;(2)判断函数的奇偶性;(3)求函数的单调区间解析:这是复合函数问题,利用换元法令t152xx2,则y,(1)由152xx20得函数的定义域为5,3,t16(x1)20,16函数的值域为0,2(2)函数的定义域为5,3且关于原点不对称,函数既不是奇函数也不是偶函数(3)函数的定义域为5,3,对称轴为x1,x5,1时,t随x的增大而增大;x(1,3)时,t随x的增大而减小又函数y在t0,16时,y随t的增大而增大,函数y的单调增区间为5,1,单调减区间为(1,3答案:(1)定义域为5,3,值域为0,2;(2)函数即不是奇函数,也不是偶函数;(3)(1,3规律总结1在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2对于幂函数y,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即0,01和1三种情况下曲线的基本形状,还要注意0,1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即0(1)时图象是抛物线型;0时图象是双曲线型;1时图象是竖直抛物线型;01时图象是横卧抛物线型作业A组1函数在区间上的最大值是( )ABCD2下列所给出的函数中,是幂函数的是( )ABCD3函数的图象是( )A B C D4下列命题中正确的是( )A当时函数的图象是一条直线B幂函数的图象都经过(0,0)和(1,1)点C若幂函数是奇函数,则是定义域上的增函数D幂函数的图象不可能出现在第四象限5函数和图象满足( )A关于原点对称 B关于轴对称C关于轴对称 D关于直线对称6 函数,满足( )A是奇函数又是减函数 B是偶函数又是增函数C是奇函数又是增函数 D是偶函数又是减函数B组1函数的单调递减区间是( )A B C D 2 如图19所示,幂函数在第一象限的图象,比较的大小( )A B C D3 对于幂函数,若,则,大小关系是( )A B C D 无法确定C组1是偶函数,且在是减函数,则整数的值是 .2幂函数图象在一、二象限,不过原点,则的奇偶性为 .3求证:函数在R上为奇函数且为增函数.参考答案A组、CBADDCB组、 ADAC组、15; 2为奇数,是偶数;3解: 显然,奇函数;令,则,其中,显然,=,由于,且不能同时为0,否则,故.从而. 所以该函数为增函数.函数与方程一函数零点的概念对于函数yf(x) (xD),我们把使f(x)0成立的实数x叫做函数yf(x) (xD)的零点注意以下两点:(1)方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点(2)函数零点的求法:代数法:求方程f(x)0的实数根;几何法:对于不能用求根公式的方程,可以将它与函数yf(x)的图象联系起来,并利用函数的性质找出零点二函数零点的判断一般地,如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数yf(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)0,这个c也就是f(x)0的根我们不妨把这一结论称为零点存在性定理对函数零点存在性定理的理解(1)并不是所有的函数都有零点,如函数y.(2)函数yf(x)如果满足:函数在区间a,b上的图象是连续不断的一条曲线,f(a)f(b)0,则函数yf(x)在区间(a,b)内有零点(3)对于有些函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号如函数yx2有零点x00,但显然函数值没有变号但是,对于任意一个函数,相邻的两个零点之间所有的函数值保持同号(4)函数在区间a,b上的图象是连续不断的一条曲线,且在区间(a,b)上单调,若f(a)f(b)0,则函数yf(x)在(a,b)内有且只有一个零点但要注意:如果函数yf(x)在a,b上的图象是连续不断的曲线,且x0是函数在这个区间上的一个零点,却不一定有f(a)f(b)0.三二分法所谓二分法,就是通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法用二分法求函数零点近似值的注意点(1)在第一步中要使:区间a,b的长度尽量小;f(a)、f(b)的值比较容易计算,且f(a)f(b)0.(2)根据函数的零点与相应方程根的关系,求函数的零点与求相应方程的根是等价的对于求方程f(x)g(x),可以构造函数F(x)f(x)g(x),函数F(x)的零点即为方程f(x)g(x)的根. 根据表格中的数据,可以判定方程exx20的一个根所在的区间是_.x10123ex0.3712.727.3920.09x212345解析令f(x)exx2,由图表知f(1)0.3710.630,f(0)1210,f(1)2.7230.280,f(3)20.09515.090,由于f(1)f(2)0时,f(x)2 008xlog2 008x,则函数f(x)的零点的个数为()A1B2C3D2 006解析因为函数f(x)为R上的奇函数,所以f(0)0,因为log2 0081,2 0081,所以f2 008log2 0080,所以,当x0时,f(x)2 008xlog2 008x,函数在区间内存在零点,又根据单调函数的定义可证明f(x)在(0,)上为增函数,因此在(0,)内有且仅有一个零点根据对称性可知函数在(,0)内有且仅有一个零点,从而函数在R上零点的个数为3,故选C.答案C点评认识函数的性质是问题获解的关键,奇偶性保证函数的对称性,换句话说,有奇偶性的函数的零点(除原点外)是成对出现的注意到函数为奇函数且在原点有定义,因此有f(0)0.其次是函数的单调性,保证了函数零点在单调区间内的唯一性,当然零点的判定方法也是问题获解不可或缺的部分求方程x22x1的一个近似解(精确度0.1)解设f(x)x22x1.f(2)10,在区间(2,3)内,方程x22x10有一解,记为x0.取2与3的平均数2.5,f(2.5)0.250,2x02.5;再取2与2.5的平均数2.25,f(2.25)0.437 50,2.25x02.5;再取2.25与2.5的平均数为2.375,f(2.375)0.109 40,2.375x00.|2.3752.437 5|0.062 50时,f(x)0,当x0时,f(x)0时,f(x)0,当x0,f(x)|x|的函数值非负,即函数f(x)|x|有零点但零点两侧函数值同号,不能用二分法求零点2若yf(x)在区间a,b上的图象为连续不断的一条曲线,则下列说法正确的是()A若f(a)f(b)0,不存在实数c(a,b),使得f(c)0B若f(a)f(b)0,不存在实数c(a,b),使得f(c)0D若f(a)f(b)0,有可能存在实数c(a,b),使得f(c)0答案D解析由零点存在性定理可知选项A不正确;对于选项B可通过反例“f(x)x(x1)(x1)在区间2,2上满足f(2)f(2)0,但其存在两个零点:1,1”推翻3方程2xx0在下列哪个区间内有实数根()A(2,1) B(0,1)C(1,2) D(1,0)答案D解析设函数f(x)2xx,其对应的函数值如下表:x21012f(x)136由于f(1)f(0)0,所以方程2xx0在(1,0)内有实数根4函数f(x)的零点是_答案2解析本题易认为零点有两个,即由x240求出x2,事实上x2不在函数的定义域内5设x0是方程lnxx4的根,且x0(k,k1),求正整数k.解设f(x)lnxx4,则函数f(x)lnxx4在正数范围内是单调递增的,故函数f(x)lnxx4仅有一个零点,f(1)ln1140,f(2)ln2240,f(2)f(3)0,即k2.6求方程2x33x30的一个近似解(精确度0.1)解设f(x)2x33x3,经试算,f(0)30,所以函数在(0,1)内存在零点,即方程2x33x30在(0,1)内有实数解,取(0,1)的中点0.5,经计算f(0.5)0,所以方程2x33x30在(0.5,1)内有解如此继续下去,得到方程的一个实数解所在的区间,如下表:(a,b)(a,b) 的中点f(a)f(b)f(0,1)0.5f(0)0f(0.5)0(0.5,1)0.75f(0.5)0f(0.75)0(0.5,0.75)0.625f(0.5)0f(0.625) 0(0.625,0.75)0.687 5f(0.625)0f(0.687 5) 0因为|0.687 50.75|0.062 50且a1)有两个不同的零点,求a的取值范围解研究函数f(x)axxa (a0且a1)的零点,即相当于研究方程axxa的根(1)当a1时,分别画出yax与yxa的图象,如图(1)所示,由于yax恒过M(0,1)点,直线yxa过点N(0,a),而a1,所以点N在点M的上方,此时两者有两个交点,即方程axxa有两个根,函数f(x)axxa (a0且a1)有两个不同的零点;(2)当0a1时,分别画出yax与yxa的图象,如图(2)所示,指数函数yax在0a0且a1)有一个零点;综上所述,a的取值范围是(1,) 作业A组、1函数的零点所在的区间是()(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)2函数f(x)=的零点所在的一个区间是 () (A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2)3若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是()A若,不存在实数使得;B若,存在且只存在一个实数使得;C若,有可能存在实数使得;D若,有可能不存在实数使得;4方程根的个数为( )A无穷多 B C D5如果二次函数有两个不同的零点,则的取值范围是()A B C D6函数零点的个数为 ( )A B C D7设,用二分法求方程 内近似解的过程中得 则方程的根落在区间( )A B C D不能确定 8直线与函数的图象的交点个数为( )A个 B个 C个 D个 9若方程有两个实数解,则的取值范围是( ) A B C D 10已知唯一的零点在区间、内,那
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版七年级上册第二单元 第一课大洲和大洋说课稿2
- 第一课 灯笼教学设计-2025-2026学年小学劳动四年级上册粤教版(主编:徐长发)
- 2025年中国高纯碳酸氢钠行业市场分析及投资价值评估前景预测报告
- 4.3 工业-分布与发展 教学设计-八年级地理上学期人教版
- 医疗校准专业知识培训课件
- 第1节 生物的进化说课稿高中生命科学沪科版第三册-沪科版
- 体育与健康九年级人教版《羽毛球正手发高远球》教学设计
- 第4节 植物在自然界中的作用新教材七年级下册生物同步教学设计(人教版2024)
- 2025年中国呋喃树脂胶泥行业市场分析及投资价值评估前景预测报告
- 口腔供应室知识培训总结课件
- 马来西亚课件客源国
- 动火作业施工方案5篇
- 浙教版九年级科学上册讲练测专题提升Ⅳ动态电路中电功电功率变化问题(原卷版+解析)
- JTS-252-2015水运工程施工监理规范
- DB4405-T 303-2023 狮头鹅屠宰操作规程
- 坚持人民至上 工会研讨发言
- 杭州师范大学2013年841无机化学考研真题
- 美学原理全套教学课件
- 子宫脱垂试题及答案
- 中国政治思想史复习资料
- 高中音乐鉴赏 第一单元 学会聆听 第一节《音乐要素及音乐语言》
评论
0/150
提交评论