




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学:探索规律型问题(图形类)一、选择题1. 下列图形都是由同样大小的五角星按一定的规律组成,其中第个图形一共有2个五角星,第个图形一共有8个五角星,第个图形一共有18个五角星,则第个图形中五角星的个数为【 】A50B64C68D72【答案】D。【分析】寻找规律:每一个图形左右是对称的,第个图形一共有221个五角星,第个图形一共有82(1+3)222个五角星,第个图形一共有182(1+3+5)232个五角星,则第个图形中五角星的个数为262=72。故选D。2. 小明用棋子摆放图形来研究数的规律图1中棋子围城三角形,其棵数3,6,9,12,称为三角形数类似地,图2中的4,8,12,16,称为正方形数下列数中既是三角形数又是正方形数的是【 】A2010B2012C2014D2016【答案】D。【分析】观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解: 2010121676,2012121678,20141216710,201612168,2016既是三角形数又是正方形数。故选D。3.边长为a的等边三角形,记为第1个等边三角形。取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形。取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形。取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),按此方式依次操作。则第6个正六边形的边长是【 】A. B. C. D. 【答案】A。【分析】如图,双向延长EF分别交AB、AC于点G、H。 根据三角形中位线定理,得GE=FH=,GB=CH=。 AG=AH=。 又ABC中,A=600,AGH是等边三角形。 GH=AG=AH=。EF= GHGEFH=。 第2个等边三角形的边长为。 同理,第3个等边三角形的边长为,第4个等边三角形的边长为,第5个等边三角形的边长为,第6个等边三角形的边长为。 又相应正六边形的边长是等边三角形的边长的, 第6个正六边形的边长是。故选A。4. 已知:顺次连接矩形各边的中点,得到一个菱形,如图;再顺次连接菱形各边的中点,得到一个新的矩形,如图;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图;如此反复操作下去,则第2012个图形中直角三角形的个数有【 】A 8048个 B 4024个 C 2012个 D 1066个【答案】B。【分析】写出前几个图形中的直角三角形的个数,并找出规律:第1个图形,有4个直角三角形,第2个图形,有4个直角三角形,第3个图形,有8个直角三角形,第4个图形,有8个直角三角形,依次类推,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n个,所以,第2012个图形中直角三角形的个数是22012=4024。故选B。5. 如图,第个图形中一共有1个平行四边形,第个图形中一共有5个平行四边形,第个图形中一共有11个平行四边形,则第个图形中平行四边形的个数是【 】A54B110C19D109【答案】D。【分析】寻找规律: 第个图形中有1个平行四边形;第个图形中有1+4=5个平行四边形;第个图形中有1+4+6=11个平行四边形;第个图形中有1+4+6+8=19个平行四边形;第n个图形中有1+2(2+3+4+n)个平行四边形;则第个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形。故选D。6. 如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;依次作下去,则第n个正方形AnBnCnDn的边长是【 】(A) (B) (C) (D) 【答案】B。【分析】寻找规律:等腰直角三角形OAB中,A=B=450,AA1C1和BB1D1都是等腰直角三角形。AC1=A1C1,BD1=B1D1。又正方形A1B1C1D1中,A1C1=C1D1=B1D1=A1B1,AC1=C1D1=D1B。又AB=1,C1D1=,即正方形A1B1C1D1的边长为。同理,正方形A2B2C2D2的边长为,正方形A3B3C3D3的边长为,正方形AnBnCnDn的边长为。故选B。二、填空题1. 如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 【答案】4n2。【分析】由图可知:第一个图案有阴影小三角形2个,第二图案有阴影小三角形2+4=6个,第三个图案有阴影小三角形2+8=12个,那么第n个就有阴影小三角形2+4(n1)=4n2个。2. 平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若平面内的不同的n个点最多可确定15条直线,则n的值为 .【答案】6。【分析】根据平面内不同的两点确定一条直线,不同的三点最多确定三条直线找出规律,再把15代入所得关系式进行解答即可:平面内不同的两点确定1条直线,平面内不同的三点最多确定3条直线,即,平面内不同的四点最多确定6条直线,即,平面内不同的n点最多确定(n2)条直线。平面内的不同n个点最多可确定15条直线时,解得n=5(舍去)或n=6。3. 图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m= (用含n的代数式表示)【答案】。【分析】寻找圆中下方数的规律: 第一个圆中,8=24=(311)(311); 第二个圆中,35=57=(321)(321);第三个圆中,80=810=(331)(331);第n个圆中,。4. 如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“”,共 个【答案】503。【分析】由图知4个图形一循环,因为2012被4整除,从而确定是共有第503。5. 如图,ABC的周长是32,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成的第3个三角形,则第n个三角形的周长为 【答案】。【分析】寻找规律:由已知ABC的周长是32,以它的三边中点为顶点组成第2个三角形,根据三角形中位线定理,第2个三角形的周长为32;同理,第3个三角形的周长为32=32; 第4个三角形的周长为32=32; 第n个三角形的周长为=32。6. 如图,下图是一组由菱形和矩形组成的有规律的图案,第1个图中菱形的面积为S(S为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推,则第n个图中阴影部分的面积可以用含n的代数式表示为 _。(n2,且n是正整数)【答案】。【分析】观察图形发现,第2个图形中的阴影部分的面积为,第3个阴影部分的面积为 ,第n个图形中的阴影部分的面积为。7. 如图,第(1)个图有2个相同的小正方形,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,按此规律,那么第(n)个图有 个相同的小正方形【答案】n(n+1)。【分析】寻找规律:第(1)个图有2个相同的小正方形,2=12, 第(2)个图有6个相同的小正方形,6=23,第(3)个图有12个相同的小正方形,12=34,第(4)个图有20个相同的小正方形,20=45,按此规律,第(n)个图有n(n+1)个相同的小正方形。8. 观察下列一组图形:它们是按一定规律排列的,依照此规律,第n个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《设备买卖合同》模板
- 幽门螺杆菌课件
- 巡察档案培训课件
- 岩棉生产安全管理培训课件
- 尾气清理安全培训内容课件
- 11.2 平面的基本事实与推论
- 9.1.2 第2课时 正、余弦定理解三角形
- 个体美容美发店员工服务合同范本
- 上海二手房屋买卖合同及房屋维修基金缴纳协议
- 6.1树立法治观念 同步课件 2025-2026学年统编版道德与法治八年级上册
- 小学数学北师大四年级上册五方向与位置四上《用数对确定位置》北师大版李雪梅PPT
- 2022年混凝土预制U型槽单元工程质量评定表
- 新视野大学英语读写教程Unit1教案(含和译文)
- 机电一体化设计
- 新教材教科版五年级上册科学 第二单元 地球表面的变化 单元全套课时练
- (中职中专)财经法规与会计职业道德课件完整版电子教案
- DB37T 5151-2019 园林绿化工程资料管理规程
- Q∕GDW 11612.43-2018 低压电力线高速载波通信互联互通技术规范 第4-3部分:应用层通信协议
- 贝多芬F大调浪漫曲—小提琴谱(带钢伴谱)
- 压力传感器(课堂PPT)
- (施工方案)场地三通一平施工方案
评论
0/150
提交评论