高二理科数学期末复习试题精选.doc_第1页
高二理科数学期末复习试题精选.doc_第2页
高二理科数学期末复习试题精选.doc_第3页
高二理科数学期末复习试题精选.doc_第4页
高二理科数学期末复习试题精选.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

如皋市江安中学高二理科数学期末复习迎考试题精选江安中学高二理科数学期末复习试题精选2010-1-28一、填空题(每题5分,共70分)1、若双曲线的虚轴长是实轴长的2倍,则等于 . ,实轴长为 2、已知实数,则是的 条件 3、下列说法正确的有 .直线a平行于平面M,则a平行于M内的任意一条直线;直线a与平面M相交,则a不平行于M内的任意一条直线;直线a不垂直于平面M,则a不垂直于M内的任意一条直线;直线a不垂直于平面M,则过a的平面不垂直于M.用斜二测画法画出的平面图形M的直观图为如图的,则M的面积是4.4、数学归纳法证明(n+1)+(n+2)+(n+n)=的第二步中,当n=k+1时等式左边与n=k时等式左边的差等于 5、(1)复数是纯虚数,其中是实数,则虚部为 ;(2) 满足等式的复数在复平面内所对应的点的集合的图形的离心率 6、设抛物线的焦点为,经过点的直线与抛物线交于、两点,又知点恰好为的中点,则的值是 7、设函数在上是减函数,则的取值范围是_8、已知是双曲线的左、右焦点,P、Q为右支上的两点,直线PQ过, ,则的值为 B1AC1D1A1BCDP9、如图,正方体的棱长为1,点在侧面及其边界上运动,并且总保持平行平面,则动点P的轨迹的长度是 _ 10、已知向量,若且, ,则 = 11、在圆中,为圆的直径,为圆上任意一点,若的斜率 都存在,则,则椭圆中类似结论为 12、已知函数的图像与函数的图像有三个不同的交点,则实数的的取值范围为 。xyA1B2A2OTM13、如图,在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为 . 14、已知命题:“对,使”若命题是假命题,则实数的取值范围是 . 二、解答题:15、(本题满分14分)设命题p:函数f(x)=是R上的减函数,命题q:函数 的定义域为R,如果“(非p)或q”为假命题,求实数的a取值范围。16、(本题满分14分)已知双曲线过点(3,2),且与椭圆有相同的焦点()求双曲线的标准方程; ()求以双曲线的右准线为准线的抛物线的标准方程 17、(本题满分15分)设函数在处取得极值,且曲线在点处的切线垂直于直线()求的值;()若函数,讨论的单调性18、(本题满分15分)在如图直三棱柱中,点是的中点. 求证:;求证:平面;求异面直线与所成的角的余弦值.19、(本题满分16分)已知抛物线,椭圆,双曲线,如图示,为与焦点对应的准线与轴的交点,为过焦点的垂直于轴的弦xyOABFKKxyOBAFxyOKBAF(1)在抛物线中,已知为直角,则在椭圆和双曲线中还为直角吗?试证明你的合情推理所得到的结论;(2)在抛物线中,已知直线与抛物线只有一个公共点,则在椭圆和双曲线中也有类似的性质吗?试选择椭圆证明你的类比推理20、(本题满分16分)已知,函数,(1)求的单调区间和值域;(2)设,若,总,使得成立,求a的取值范围;(3)对于任意的正整数,证明(注:)高二理科数学期末复习精选试题答案2010-1-2815 略 16、解:(1)由椭圆方程得焦点2分由条件可知,双曲线过点(3,-2),根据双曲线定义得:5分即得,所以 7分双曲线方程为:,9分(2)由(1)得双曲线的右准线方程为: 11分13分从而可得抛物线的标准方程为:15分17、解()因又在x=0处取得极限值,故从而由曲线y=在(1,f(1)处的切线与直线相互垂直可知该切线斜率为2,即()由()知,令(1)当(2)当K=1时,g(x)在R上为增函数(3)方程有两个不相等实根当函数当时,故上为减函数时,故上为增函数18、解:(1)因为已知直三棱柱的 底面三边分别是3、4、5,所以两两互相垂直,。如图以为坐标原点,直线分别为轴、轴、轴建立空间直角标系, 2分则, . 4分(2)设与的交点为,连接,则则: 6分 , 内,平面平面 ; 8分(3) ,. 10分;所求角的余弦值为 . 12分(其它方法仿此酌情给分)19、解:解:(1)在椭圆中, ,,得为锐角; 4分同样,在双曲线中, ,,从而为钝角 8分(2)在椭圆和双曲线中有相同的性质在椭圆中同(1)可知直线的斜率是离心率,直线的方程为,代入,得,直线与椭圆只有一个公共点 15分注:只给出正确推理结论而没能证明的(1)分别扣2分;(2)扣3分20解:(1)令,解得,舍去由下表:0(0,)(,1)10+可知,的单调递减区间是(0,),递增区间是(,1);4分当时,的值域为, (=) 6分(2),当,时,为上的减函数,从而当时有= 7分由题意, , 9分即解式得 ;解式得又,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论