




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016届高三文科数学月考试卷(10月份)一、 选择题1. 若集合,则 A B C D【答案】【考点定位】本题考查一元二次方程、集合的基本运算,属于容易题2. 若集合,则( )A B C D【答案】C【解析】试题分析:,故选C考点:集合的交集运算3. 设全集,则( )(A) (B) (C) (D)【答案】B【解析】试题分析: 选B4. 已知集合,则( )A B C D【答案】A5. 集合,则( )A B C D【答案】6. 已知全集,集合,集合,则集合( )(A) (B) (C) (D)【答案】B【解析】试题分析:,则,故选B.7. 若集合,则( )A BC D【答案】A8. 下列函数中为偶函数的是( )A B C D【答案】B【解析】试题分析:根据偶函数的定义,A选项为奇函数,B选项为偶函数,C选项定义域为不具有奇偶性,D选项既不是奇函数,也不是偶函数,故选B.9. ,三个数中最大数的是 【答案】【解析】试题分析:,所以最大.10. 下列函数中,既不是奇函数,也不是偶函数的是 A B C D【答案】【解析】令,则,即,所以既不是奇函数也不是偶函数,而BCD依次是奇函数、偶函数、偶函数,故选11. 下列函数中,既是偶函数又存在零点的是( )(A) y=lnx (B) (C)y=sinx (D)y=cosx【答案】D12. 下列函数为奇函数的是( )A B C D 【答案】D考点:函数的奇偶性13. 设函数,( )(A)3 (B)6 (C)9 (D)12【答案】C【解析】由已知得,又,所以,故14. 设,则( )A B C D【答案】15. 已知定义在 上的函数 ( 为实数)为偶函数,记 ,则 的大小关系为(A) (B) (C) (D) 【答案】C【解析】试题分析:因为函数为偶函数,所以,即,所以所以,故选C.二、 填空题1. 已知曲线在点 处的切线与曲线 相切,则a= 【答案】8【解析】试题分析:由可得曲线在点处的切线斜率为2,故切线方程为,与 联立得,显然,所以由 .2. 函数在其极值点处的切线方程为_.【答案】3. 。【答案】-1【解析】试题分析:原式4. 已知函数的图像过点(-1,4),则a= 【答案】-2【解析】试题分析:由可得 .5. 已知集合,则集合中元素的个数为_.【答案】5【解析】试题分析:16. 若函数 ( 且 )的值域是 ,则实数 的取值范围是 【答案】17. 若函数f(x)=xln(x+)为偶函数,则a= 【答案】1【解析】由题知是奇函数,所以 =,解得=1.三、 计算题1. 设函数,()求的单调区间和极值;()证明:若存在零点,则在区间上仅有一个零点【答案】(1)单调递减区间是,单调递增区间是;极小值;(2)证明详见解析.所以,的单调递减区间是,单调递增区间是;在处取得极小值.()由()知,在区间上的最小值为.因为存在零点,所以,从而.当时,在区间上单调递减,且,所以是在区间上的唯一零点.当时,在区间上单调递减,且,所以在区间上仅有一个零点.综上可知,若存在零点,则在区间上仅有一个零点. 2. 已知函数()求函数的单调递增区间;()证明:当时,;()确定实数的所有可能取值,使得存在,当时,恒有【答案】() ;()详见解析;()【解析】试题分析:()求导函数,解不等式并与定义域求交集,得函数的单调递增区间;()构造函数,欲证明,只需证明的最大值小于0即可;()由(II)知,当时,不存在满足题意;当时,对于,有,则,从而不存在满足题意;当时,构造函数,利用导数研究函数的形状,只要存在,当时即可试题解析:(I),由得解得故的单调递增区间是(II)令,则有当时,所以在上单调递减,故当时,即当时,(III)由(II)知,当时,不存在满足题意当时,对于,有,则,从而不存在满足题意当时,令,则有由得,解得,当时,故在内单调递增从而当时,即,综上,的取值范围是3. 已知.(I)讨论的单调性;(II)当有最大值,且最大值大于时,求a的取值范围.【答案】(I),在是单调递增;,在单调递增,在单调递减;(II).【解析】 4. 已知函数. (1)试讨论的单调性; (2)若(实数c是a与无关的常数),当函数有三个不同的零点时,a 的取值范围恰好是,求c的值.【答案】(1)当时, 在上单调递增;当时, 在,上单调递增,在上单调递减;当时, 在,上单调递增,在上单调递减(2)考点:利用导数求函数单调性、极值、函数零点5. 设函数,()求的单调区间和极值;()证明:若存在零点,则在区间上仅有一个零点【答案】(1)单调递减区间是,单调递增区间是;极小值;(2)证明详见解析.所以,的单调递减区间是,单调递增区间是;在处取得极小值.()由()知,在区间上的最小值为.因为存在零点,所以,从而.当时,在区间上单调递减,且,所以是在区间上的唯一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 调研地理考试题及答案
- 人力资源管理系统操作手册
- 地震操场考试题及答案
- 企业团队建设与协作方案集
- 地理简单考试题及答案
- 《中西古典文学比较:大学文学概论教学教案》
- 大坝管理考试题及答案
- 心中的英雄:写关于英雄的作文4篇范文
- 销售预算编制与执行分析工具助力业务决策
- 销售业绩目标分解与考核指标模板
- n4考试题真题及答案
- 医保网络安全培训
- 水电碳足迹评估方法-洞察及研究
- 《白雪公主》格林童话课件
- 电梯公司维保人员日常管理制度
- 舒曼教学课件
- 山东省烟台市芝罘区(五四制)2023-2024学年八年级下学期语文期末试卷(含答案)
- 检验检测薪酬管理制度
- 商业综合体运营项目可行性分析报告
- 《无人机概论》高职无人机应用技术专业全套教学课件
- 和父母断绝协议书
评论
0/150
提交评论