




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Python下Pandas的14个最佳特色功能14 Best Python Pandas FeaturesPandas is the most widely used tool for data munging. It contains high-level data structures and manipulation tools designed to make data analysis fast and easy.In this post, I am going to discuss the most frequently used pandas features. I will be using olive oil data set for this tutorial, you can download the data set from thispage(scroll down todatasection). Apart from serving as a quick reference, I hope this post will help you to quickly start extracting value from Pandas. So lets get started!1) Loading Data“The Olive Oils data set has eight explanatory variables (levels of fatty acids in the oils) and nine classes(areas of Italy)”. For more information you can check myIpython notebook.I am importing numpy,pandasandmatplotlibmodules.1234%matplotlib inlineimport numpy as npimport matplotlib.pyplot as pltimport pandas as pdI am using pd.read_csv to load olive oil data set. Function head returns the first n rows of olive.csv. Here I am returning the first 5 rows.2) Rename FunctionI am going to rename the first column (Unnamed: 0) to area_Idili.Rename functionas an argument it takes a dictionary of column names that should be renamed as keys(olive_oil.columns0) and the new title(area_Idili) to be the value. Olive_oil.columns will return the column names.inplace = Trueis used in case you want to modify the existing DataFrame.3) MapOne thing that I want to do is to clean the area_Idli column and remove the numbers. I am usingmapobject to perform this operation.Mapproperty applies changes to every element of a column. I am applying split function to columnarea_idili.Split function returns a list, and -1 returns the last element of the list. A detailed explanation of lambda is givenhere.See how split function works:4) Apply and Apply MapI have a list of acids called acidlist. Apply is a pretty flexible function, it applies a function along any axis of the DataFrame. I will be usingapplyfunction to divide each value of the acid by 100.list_of_acids =palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, eicosenoic12df = olive_oillist_of_acids.apply (lambda x: x/100.00)df.head (5)Similar toapply,apply mapfunction works element-wise on a DataFrame.Summing up,applyworks on a row/column basis of a DataFrame,applymapworks element-wise on a DataFrame, andmapworks element-wise on a Series.5)Shape and ColumnsShapeproperty will return a tuple of the shape of the data frame.olive_oil.columns will give you the column values.6) Unique functionOlive_oil.region.unique()will return unique entries in region column, there are three unique regions (1,2,3). I am applying the sameuniqueproperty toareacolumn, there are 9 unique areas.7) Cross TabCross Tab computes the simplecross tabulationof two factors. Here I am applying cross tabulation to area and region columns.8)Accessing Sub data framesThe syntax for indexing multiple columns is given below.To index a single column you can useolive_oilpalmiticorolive_oil.palmitic.9) Plottingplt.hist(olive_oil.palmitic). You can plot histogram usingplt.histfunction.You can also generate subplots of pandas data frame. Here I am generating 4 different subplots for palmitic and linolenic columns. You can set the size of the figure usingfigsizeobject, nrows and ncols are nothing but the number of columns and rows.10) Groupby and StatisticsGroupbygroups the data into 3 parts(region 1, 2 and 3). The functiongroupbygives dictionary like object. Here I am grouping by regions olive_oil.groupby(region).I am applyingdescribeon the group, describe takes any data frame and compute statistics on it. This is the quick way of getting statistics by group of any data frame.You can also calculate standard deviation of theregion_groupby usingolive_oil.groupby(region).std()11) Aggregate functionAggregate function takes a function as an argument and applies the function to columns in thegroupbysub dataframe. I am applying np.mean(computes mean) on all three regions.12) JoinI am renaming ol mean and olstd columns.In 34: list_of_acids =palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, eicosenoicPandas can do general merges. When we do that along an index, its called ajoin. Here I make two sub-data frames and join them on the common region index.13) MaskingYou can also mask a particular part of the data frame.olive_oil.eicosenoic 0.05 will check if each value in column eicosenoic is less than 0.05, if the value is less than 0.05 then it will return true, else it will return false.In 29: eico=(olive_oil.eicosenoic 0.05)14) Handling Missing ValuesMissing data is common in most data analysis applications. I find drop na and fill na function very useful while handlingmissing data.I am creating a new data frame.Thedropnacan used to drop rows or columns with missing data (None). By default, it drops all rows with any missing entry.fillnacan be used to fill missing data (None). First, I am creating a data frame with a single column.I am usingfillnareplaces the missing values with the mean of DataFrame(data).ConclusionThese are some of the important functions I use frequently while cleaning data. I highly recommend Wes MicknneysPython for Data Analysisbookfor learning pandas. Is there any other
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保健食品品牌国际化推广创新创业项目商业计划书
- 教师招聘之《小学教师招聘》能力提升题库含答案详解(综合题)
- 教师招聘之《小学教师招聘》模拟考试高能含答案详解(a卷)
- 教师招聘之《小学教师招聘》练习题库含答案详解(达标题)
- 2025年教师招聘之《幼儿教师招聘》考前冲刺测试卷带答案详解(考试直接用)
- 教师招聘之《小学教师招聘》模拟考试高能及完整答案详解【历年真题】
- 2025年轻生社会测试题及答案
- 2025年辽宁警务辅助人员招聘考试(申论)历年参考题库含答案详解
- 2025江苏盐城市文化广电和旅游局直属单位招录政府购买服务用工5人笔试备考题库及答案解析
- 民法典第679条条文及劳动合同解除争议处理规范
- 数据安全技术应用职业技能竞赛理论考试题库500题(含答案)
- 中国癫痫临床诊疗指南完整版
- Unit+2+Topic+2++All+these+problems+are+very+serious作业设计 仁爱版英语九年级上册
- 《人工智能基础第2版》全套教学课件
- 巨量-营销科学(初级)认证培训考试题库(含答案)
- 盘扣式卸料平台施工方案
- 营养师在体重管理中的角色与实践考核试卷
- 新疆大学机械设计基础
- 消防材料分类明细表
- G20峰会场馆参观设计学习
- 家庭教育指导案例报告
评论
0/150
提交评论