




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20寸TVPOWER板电路工作原理 LCDTV电源介绍 第一讲 开关电源的工作原理 第二讲 ADAPTER部份的工作原理 第三讲 INVERTER部份的工作原理 第四讲 维修思路讲解 LCDTV电源介绍 因液晶屏本身没有发光功能 这就需要在液晶屏后加一个照明系统 该背光照明系统由发光部件 能使光线均匀照射在液晶表示面的导光板和驱动发光部件的电源构成 现在发光部件的主流为被称作冷阴极管的萤光管 其发光原理与室内照明用的热阴管类似 但不需象热阴管那样先预热灯丝 它在较低温状态就能点亮 因此叫冷阴极管 但要驱动这种冷阴极管需要能输出1000 1500V交流电压的特殊电源 由于一般市用电网提供的是220V 50Hz或110V 60Hz的交流电压 而显示器 不论是早期的CRT管 还是新兴的LCD显示器 乃至LCD TV 的大部分电路是工作在低压的条件下 所以需要在显示器上专门配有电源电路 其作用就是将市电的交流电压转换成为12V的直流电压输出 从而向显示器供电 由于显示器内部的主板上还有DC DC电压转换器以获得8V 5V 3 3V 2 5V电压 所以电源输出的12V的直流电压就能满足显示器工作的要求 鉴于此 要实现这一特殊的电源 就要从12V直流电压转换到1000 1500V交流电压 这就是Inverter 而从交流电压转换到12V直流电压的即为Adapter 早期 冠捷电子采用Adapter和Inverter分开的方式实现对显示器的供电 Adapter采用的PWMIC为UC3842或UC3843 Inverter采用的PWMIC为TL1451 后来 出于Costdown的考虑 采用Adapter和Inverter一体化的方案 Adapter部分采用的PWMIC为SG6841 Inverter部分采用的PWMIC为TL1451 随着灯管的增加及所需的功率不断增加 Inverter部分回路的设计方案得到转变 由原来的Royer回路变为全桥式回路 为此应用到OZ960IC 简术 开关电源的基本工作原理 开关电源是利用时间比率控制 TimeRatioControl 缩写为TRC 的方法来控制稳压输出的 按TRC控制原理 有以下三种方式 脉冲宽度调制 PulseWidthModulation 缩写为PWM 开关周期恒定 通过改变脉冲宽度来改变占空比的方式 脉冲频率调制 PulseFrequencyModulation 缩写为PFM 导通脉冲宽度恒定 通过改变开关工作频率来改变占空比的方式 3 混合调制导通脉冲宽度和开关工作频率均不固定 彼此都能改变的方式 它是以上二种方式的混合 在目前开发和使用的开关电源集成电路中 绝大多数也为脉宽调制型 本设计采用的就是脉宽调制型 PWM 开关稳压电源 其基本原理可参见右图 对于单极性矩形脉冲来说 其直流平均电压Uo取决于矩形脉冲的宽度 脉冲越宽 其直流平均电压值就越高 直流平均电压Uo可由公式计算 即Uo Um T1 T式中Um 矩形脉冲最大电压值 T 矩形脉冲周期 T1 矩形脉冲宽度 脉宽调制型 从上式可以看出 当Um与T不变时 直流平均电压Uo将与脉冲宽度T1成正比 这样 只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄 就可以达到稳定电压的目的 1 此外 为因应各种不同的输出功率 开关电源按DC DC变换器的工作方式分又可分为反激式 Flyback 顺向式 Forward 全桥式 FullBridge 半桥式 HalfBridge 和推挽式 Push Pull 等电路拓扑 Topology 结构 其中单端反激式开关电源是一种成本最低的电源电路 输出功率为20 100 可以同时输出不同的电压 且有较好的电压调整率 应用较为广泛 本设计采用的就是该方案 其典型的电路如图所示 1 图1 1反激式开关电源典型电路结构 藉由PWMIC控制开关管的导通与否 配合次级侧的二极管和电容 即可得到稳定DC电压的输出 Ui为含有一定交流成份的直流电压 由开关功率管斩波和高频变压器降压 将储存于在变压器的能量传递给次级侧 转换成所需电压值的方波 最后再将这个方波电压经整流滤波变为所需要的直流电压 此外改变变压器初 次级的圈数 就可以得到想要的DC电源 PWM控制电路是这类开关电源的核心 它通过取样反馈闭环回路 调整高频开关元件的开关时间比例即占空比 以达到稳定输出电压的目的 由于高频变压器的磁芯仅工作在磁滞回线的一侧 并且只有一个输出端 而MOS开关功率管导通时 次级整流二极管截止 电能就储存在高频变压器的初级电感线圈中 当MOS功率管关断时整流二极管导通 初级线圈上的电能传输给次极绕组 并经过次级整流二极管输出 故称之为单端反激式 20寸TCLTV电源 1 AC DC12V输出部分 使用IC为 SG6841D2 DC DC5V输出部分 使用IC为 LM38453 DC ACInverter部分 调光部分使用IC为 LM339 LM358驱动部分使用IC为 LM339 20寸TVPOWER方框图 2 1PWM控制器SG6841简介目前 开关电源的集成化与小型化已成为现实 早期的PWMIC大多采用UC384X系列 如UC3842 UC3843 但由于新产品越来越积体化及环保和安规要求越来越严苛的趋势下 出现了384XG及684X等具有GreenFunction的IC GreenFunction为环保功能的意思 亦称之为BlueAngel 其要求是在满载70W以下的电源产品 当负载没有输出功率的情况下 输入电源仍照常供应时 电路消耗功率必需小于1W以下 欧系的InfineonCoolsetICE2AXXX及ICE2BXXX系列不仅具有GreenFunction 并且把以往外加的功率开关集成在8DIP的IC内 以节省空间和制造流程 SG6841是由SystemGeneral崇贸科技开发的一款高性能固定频率电流模式控制器 专为离线和DC DC变换器应用而设计 它属于电流型单端PWM调制器 具有管脚数量少 外围电路简单 安装调试简便 性能优良 价格低廉等优点 可精确地控制占空比 实现稳压输出 还拥有低待机功耗和众多保护功能 所以 为设计人员提供只需最少的外部元件就能获得成本效益高的解决方案 在实际中得到广泛的应用 SG6841有下列性能特点 第一讲ADAPTER原理讲解 在无负载和低负载时时 PWM的频率会线性降低进入待机模式以实现低功耗 同时提供稳定的输出电压 由于采用BiCMOS 启动电流和正常工作电流减少到30 A和3mA 因此可大大提高电源的转换效率 SG6841是固定频率的PWM控制器 它的工作频率通过一个外接电阻来决定 改变电阻值可轻易改变频率 内建同步斜率补偿电路 可保证连续工作模式下电流回路的稳定性 内建电压补偿电路可在一个较大的AC输入范围内实现功率限制控制 并提供过载 短路保护功能 此外 还设有低电压锁定 UVLO 功能 使工作更稳定 可靠 可通过外接一个负温度系数热敏电阻 NTCR 来传感环境温度以实现过温保护 也可利用该功能实现过压保护 具有图腾柱 即推拉输出电路 输出极 可实现良好的EMI 其最大输出电压钳位在18V 常见的SG6841有8脚DIP和SO两种封装 其各引脚功能分别如下所示 GND 接地 FB 反馈电压输入端 用于提供PWM调节信息 PWM占空比就是由它控制 Vin 启动电流输入端 SG6841开始工作必须在该端要提供一个启动电压 RI 参考设置端 通过连接一个电阻接地来为SG6841提供一个恒定的电流 改变电阻阻值将改变PWM的频率 RT 温度保护端 该端输出一个恒定的电流 在该端接一NTCR接地来传感温度 当该端电压下降到一定值时会启动过温保护 在本设计中 该功能被用于高压保护 Sense 电流传感端 当该端电压达到一个阈值时芯片会停止输出 从而实现过流保护 VDD 电源供电端 Gate PWM脉冲输出端 图腾柱 即推拉输出电路 输出极驱动功率开关管 振荡器SG6841的PWM频率范围为50KHz 100KHz RI端通过连接一个电阻Ri接地来为SG6841提供一个恒定的电流 改变电阻阻值将改变PWM的频率 2 2SG6841内部结构与工作原理 图2 1SG6841内部框图 在本设计中 取Ri 24k SG6841的PWM频率为70 42kHz 2 欠压锁定SG6841采用了欠压锁定比较器来保证输出级被驱动之前 集成电路已完全可用 欠压锁定回路其实质是一个滞回比较器 以防止在通过它们各自的门限时产生错误的输出动作 它的开启电压为16V 关闭电压为10V 在启动过程中 比较器反向输入端为16V 当VDD 16V时 比较器输出为低电平 SG6841无法工作 当VDD升到16V时 欠压锁定器输出为高电平 SG6841正常工作 同时MOS管导通 使比较器反向输入端为10V 当VDD下降至10V时 欠压锁定器的输出回到低电平 整个电路停止工作 SG6841的7脚端设置了一个32V的齐纳二极管 保证内部电路绝对工作在32V以下 以防电压过高损坏芯片 3 输出部分SG6841的8脚为输出脚 它是一个单图滕柱输出级 专门设计用来直接驱动功率MOSFET的 具有降低热损耗 提高效率和增强可靠性的作用 在芯片内部有一18V的稳压管与Gate端相连使输出电压钳位在18V 可保护MOSFET免被击穿 通过控制PWM脉冲的上升与下降时间 可有效减少开关噪声 提高电源的EMI 并提供稳定的MOSFET管Gate极驱动 在1 0nF负载时 它能提供高达 1 0A的峰值驱动电流和典型值为250ns的上升时间和50ns的下降时间 还附加了一个内部电路 使得任何时候只要欠压锁定有效 输出就进入灌模式 这个特性使外部下拉电阻不再需要 4 电流取样比较器和脉冲调制锁存器SG6841作为电流模式控制器工作 输出开关导通由振荡器开始振荡起始 当峰值电感电流到达FB反馈端电平时终止 这样在逐周基础上误差信号控制峰值电感电流 所用的电流取样比较器 脉宽调制锁存配置确保在任何一定的振荡周期内 仅有一个单脉冲出现在输出端 电感电流通过插入一个与输出开关Q901的源极串联的以地为参考的取样电阻Rs转换成电压 此电压由电流取样输入端Pin6Sense监视 并与来自Pin2FB端电平相比较 通常取样电阻Rs为一小电阻 在正常的工作条件下 峰值电感电流由管脚1上的电压控制 其中 Ipk VFB 1 0V 3RS 其中 VFB为FB端电压 1 0V为在两个二极管上的压降 1 3为经两个电阻后的分压比 当电源输出过载或者如果输出电压取样丢失时 异常的工作条件将出现 在这些条件下 电流取样比较器门限将被内部箝位至0 85V 因此最大峰值开关电流为 Ipk max 0 85V Rs当输入电压很大时 取样电流将非常小 这时可通过高压补偿回路来调节 在电路中 通过R904与R905 均为1M 来提高Sense端电平 实现高压补偿 当负载短路或其它原因引起功率管电流增加 并使取样电阻Rs上的电压升高 当Sense端的电压达到0 85V时 RS触发器的R端输入为低电平 从而Q非输出低电平 SG6841即停止脉冲输出 可以有效的保护功率管不受损坏 从而实现过流保护 由此可得Ipk max 0 85V Rs 改变Rs值即可改变其最大的输出功率 在本设计中取Rs 0 3 可得Ipk max 2 83A 在SG6841的Sense端产生的噪声会引起PWM输出脉冲的不稳定 在芯片内部Sense端经过一个斜率补偿电路后 才接至比较器同相输入端 这能有效地降低噪声的影响 良好的PCB布线和避免元件管脚太长也有利于减少噪声 而在UC3841的应用电路中则需要在Sense端增加一个RC滤波器来解决同样的问题 可见SG6841的功能更强 外围电路更简单 当SG6841正常工作时 其内部振荡器产生振荡信号 此信号一路直接加到图腾柱电路的输入端 另一路加到PWM脉宽调制RS触发器的S端 RS型PWM脉宽调制器的R端接电流检测比较器输出端 当峰值电感电流未达到FB反馈端电平时 比较器输出低电平 此时R端为低电平 Q非端输出低电平 当峰值电感电流达到FB反馈端电平时 比较器输出高电平 此时R端为高电平 Q非端输出高电平 可见 FB端电压越高 Q非端脉冲越窄 同时Gate端输出脉宽也越窄 占空比减小 FB端电压越低 Q非端脉冲越宽 同时Gate端输出脉宽也越宽 占空比增大 从而实现PWM控制 使输出电压稳定 2 3SG6841的启动与供电SG6841需要在启动时给Pin3Vin提供一30 A的启动电流以使芯片进行有效的自举 在电路中 将Pin3通过两个1M 的电阻接至PFC级的DC输出端 便可在AC输入90V 264V的范围内实现SG6841的有效启动 在SG6841正常工作后 其Pin7VDD端必须提供10V 30V电压为芯片供电 2 4高压保护电路SG6841的Pin5RT端恒定输出一电流IRT IRT 2 1 3V Ri RT端可串联一负温度系数的热敏电阻 NTCR 接地 RNTC随温度上升而降低 这时当IRT RNTC 0 65V时启动过温保护功能 当RT端电压略低于0 65V PWM脉冲的占空比会减少 从而降低电源输出电压来降低温度 当环境温度过高 RT端电压大大低于0 65V时 PWM脉冲的占空比会减少至零 从而使电源完全停止输出 同时我们可以利用SG6841的该功能实现电源的高压保护 图2 2高压保护回路部分电路图 高压保护回路如图2 2所示 当电网电压升高超过最大值时 自馈线圈输出的电压也将升高 若电压超过20V 此时ZD901被击穿 R912就会产生压降 当这个压降有0 6V时将使Q902导通 拉低Q901的基极电位 使Q901也导通 这样SG6841Pin5通过D903 Q903直接接地 使SG6841迅速关断脉冲输出 同时Q901的导通也拉低了输入到SG6841Pin7的电压 使SG6841停止工作 2 5待机工作模式SG6841具有GreenFunction 支持BlueAngel模式 当低负载和无负载情况下 FB端电压会有所降低时 当其低于一个阈值电压时 会进入节能模式 SG6841的PWM工作频率会迅速降低至10kHz左右 此时仍有稳定的12V电压输出 如图所示即为待机时功率开关管D极的电压波形 FB端电压会有所降低时 当其低于一个阈值电压时 会进入节能模式 SG6841的PWM工作频率会迅速降低至10kHz左右 此时仍有稳定的12V电压输出 如图所示即为待机时功率开关管D极的电压波形 开关电源中的调整管工作于开关状态 必然存在开关损耗 而且损耗的大小随开关频率的提高而成比例增加 另一方面 开关电源中的变压器 电抗器等磁性元件及电容元件的损耗 也随频率的提高而增加 因此通过降低其工作频率可有效降低其待机时的功耗 图2 13待机模式功率开关管D极的电压波形 ADAPTERSECTION DC DC变换器用于开关电源时 很多情况下要求输入与输出间进行电隔离 这时必须采用变压器进行隔离 称为隔离变换器 这类变换器把直流电压或电流变换为高频方波电压或电流 经变压器升压或降压后 再经整流平滑滤波变为直流电压或电流 因此 这类变换器又称为逆变整流型变换器 变压器T901因为有气隙之故 其初级圈具有隔离 变压和储能电感的三重功能 当SG6841的Gate端输出PWM控制脉冲 控制Q903做开关状态 当Gate端输出高电平时 开关管Q903导通 此时T901的初级线圈有电流流过 产生上正下负的电压 则次级产生下正上负的感应电动势 但这时次级上的二极管D910 D911截止 此阶段为储能阶段 而当Gate端输出低电平时 开关管Q903截止 初级线圈上的电流在瞬间变为0 初级线圈的电动势为下正上负 在次级线圈上感应出上正下负的电动势 此时D910 D911导通 有电压输出 2 5直流变换电路及工作过程 图3 1直流变换电路 由于在开关管关断时 初级线圈还有电流 因此为防止随开关启 闭所发生的电压浪涌 可采用R C或L C缓冲器 本设计中在变压器的输入端需设有缓冲电路 它由D901 R903与C906组成 在开关管关断的瞬间 电感上的电流通过D901向C906充电 为了确保在开关管截止期间 不能因为C906的充电而减小铁芯向负载释放的能量 即充电时间应小于Toff 另外 为了避免在开关管在关断的过程中工作在高电压大电流区 充电时间应大于或等于Toff 因此综合考虑上述两方面的因素 应取C906的充电时间等于Toff 因此取C906的值为152pF 它的耐压值为1KV 在开关管导通的瞬间 电容C906通过R与开关管放电 放电的时间常数 RC906 为了减轻开关管在完全导通时所承受的电流 应在开关管开启的时间Ton内放掉C906上的大部分能量 图3 2SG6841Pin8Gate输出波形 InputAC90V 60Hz 图3 3SG6841Pin8Gate输出波形 InputAC264V 50Hz 图3 4Q901D极波形 InputAC264V 90Hz 图3 2和图3 3分别为输入电压为AC90V 60Hz和264V 50Hz时的Gate端输出PWM脉冲的波形 在输入AC电压不同时 脉冲频率几乎不变 接近70KHz 但占空比随输入电压的不同而不同 开关电压正是利用这种脉宽调制的方式在较广的输入电压范围内实现12V的稳定输出 输入电压为AC90V 60Hz时占空比为16 55 而264V 50Hz时的占空比29 28 可见输入电压小时开关管的导通时间小 从而变压器次级输出电压占空比更大 图3 4为输入AC264V 90Hz开关MOS管D极电压波形 由于开关功率管Q901功耗较大 为防止它们被在高温条件下连续工作积累的热量烧毁或工作异常 需加一散热片 在变压器的输出端设有输出整流滤波回路 对直流变换后的电压进行整流与滤波 使之得到稳定的输出 因为整流二极管D存在着反向恢复时间 在导通瞬间会引起较大的尖峰电流 它不仅增加了D本身的功耗 而且使开关管流过过大的浪涌电流 增加了开通瞬间的功耗 一般采用快速恢复二极管或肖特基二极管作为整流二极管 在低电压 大电流输出的开关电源中整流二极管的功耗是其主要功耗之一 因此 当U0 8V时 一般选用肖特基二极管来整流 其优点是 导通电压Uon 0 4 0 6V 为一般PN结的一半 反向恢复快且有足够的反向电压 当U0 8V时 一般选用快速恢复二极管整流 它的反向耐压可达到数百伏 同时 D的电流平均值应大于输出电流 依据上述的要求 采用了两个同样的二极管集成块 它们分别由两个规格为10A 100V的快速恢复二极管并联而成 这样可使整流达到较佳的效果 图3 5次级整流滤波电路 图3 6变压器次级绕组输出电压波形 当输出整流二极管两端加反压时 由于二极管中贮存电荷 也将有较大的浪涌电流产生 因此在二极管及输出电压中将有很大的噪声 在整流二极管上并接一RC R919 R920 C913 回路 可吸收上述干扰 L903 C916和C917组成输出端抑制传导干扰电路 这在上文已做了详细介绍 由于整流二极管D910 D911功耗较大 为防止它们被在高温条件下连续工作积累的热量烧毁或工作异常 需加一散热片 此外 若在变压器次级在增加一些绕组 通过选用合适的匝数比 便可得到不同等级的直流电压输出 为显示器的其它电路提供电压 但这会使电压取样反馈回路显得复杂 且稳压效果较差 除此以外 还可外加一些DC DC转换电路来将12V的输出电压转换为5V等其它需要的直流电压 如图4 1所示的电路图为电压取样和反馈回路 该电路主要通过光电耦合器 IC902 和精确电位调节器 IC903 将输出端电压反馈回SG6841PIN2FB端 L903接自次级整流滤波电路的输出端 在介绍该电路之前 先介绍一下TL431 IC903 TL431为精确电位调节器 其内部原理图如图4 1所示 其内部有一个电压比较器 该电压比较器的反相输入端接内部基准电压2 495V 2 该比较器的同相输入端接外部控制电压 比较器的输出用于驱动一个NPN的晶体管 使晶体管导通 电流就可以从Cathode端流向Anode 2 6电压取样和反馈回路 图4 1TL431内部原理图 当电源的输出端电压超过12V时 由于REF 2 5V 则TL431内部比较器的输出高电平从而使NPN管导通 IC902即光电耦合器的2脚电位随着降低 显然这种变化势必会使得流过光电耦合器的发光二极管的电流有所增大 由于光电耦合器PC123Y24P的CTR 电流传感系数即流过发光二极管的电流与流过光敏三极管的电流的比值 1 使得从PC123Y24P中的光敏三极管的4脚流过的电流也有所增大 这导致SG6841PIN2FB端电压降低 于是PIN6Gate端的输出脉冲占空比变小 使次级输出电压降低 所以达到降压的目的 输出端电压下降 同理 当输出端电压降低时 TL431内部比较器的输出低电平从而使NPN管截止 从而使得流过光电耦合器的发光二极管的电流减小 可使SG6841PIN2FB端电压升高 于是PIN6Gate端的输出脉冲占空比变大 输出电压上升 此外 由R936 C929组成阻抗匹配电路 起到高频补偿作用 电压输出端12V电压由R925和R926分压后输入TL431的REF端 其中R925的阻值为4 3K R926的阻值为2 4K 当电源正常工作时 输出5V的电压经分压后刚好为2 5V输入TL431 第二讲DC DC12VTO5V 2 7DC DC12to5V部分 Isense过流检测脚GND信号接地端NCF B 反馈脚可调脚过流门限电压设定脚 后面详解 PWRGND能量接地端门驱动PGATE的范围是Vin至 Vin 5 VVin芯片供电脚 3845主要特性 输入电压4 5至35V输出电压1 242至Vin可调效率高达93 1 3 过温时 2 内部参考电压100 的占空比最大操作频率范围高达1MHz过流保护二 3845各引脚功能如右图所示 Isense过流检测脚GND信号接地端NCF B 反馈脚可调脚过流门限电压设定脚 后面详解 PWRGND能量接地端门驱动PGATE的范围是Vin至 Vin 5 VVin芯片供电脚 三 3845功能描述总述LM3845是一款Buck型DC DC控制芯片 它的核心技术是带滞回的比较器 滞回电压大约为10mV 由反馈电压VFB来控制开关管的通断 当电感中的电流太高时 限流保护回路动作同时关断开关管 关闭时间大约为9 s 这种带滞回控制型芯片不用内部振荡器 开关频率完全取决于外部元件和外部条件 操作频率带轻载时会下降 以达到节能的目的 其内部框图如下 可以通过外部的两个电阻来方便地选择输出电压 如下图所示 公式为 VOUT 1 242 R1 R2 R2 电压的输出范围在1 242V Vin 那么最小的纹波电压VOUT PP可以用同样的办法计算出来 VRipper HYST R1 R2 R2 100mV R1 R2 R2假设VOUT为5V 那么 R1 R2 R2等于5 1 242 可得 VRipper 5 125 4mV即输出电压为5 0 04V 4 滞回控制回路LM3845使用一个基于电压反馈环控制的比较器来对反馈电压与内部的1 242V参考电压做比较 并存在10mV的滞回门限以防止高频干扰所带来的误判 当反馈端的输入低于参考电压时比较器输出低电平 使得P沟道的栅极为低电平 将PMOSFET打开 当开关 ON 时 电源通过开关管和电感给COUT充电 此时电感中的电流线形增长 输出电压也随之线性增长 当FB达到门限电平时 滞回比较器的状态由高电平转为低电平 开关管关断 此时电感由于电流不能突变而需通过二极管续流 电感电流线性减小 反馈电压到达参考电压时 比较器输出状态改变 整个工作过程完成 开始下一个周期 5 限流操作LM3845具有周期检测电流的功能 它有两种检测方式 第一种是通过RDS上的电流直接检测 第二种是通过附加电阻RSENSE来检测电流 当限流功能起作用时 LM3845把外部PFET关闭9 s 电流检测门限由外部RADJ决定 限流检测电路由ISENSE比较器与一个单脉冲发生器构成 如下图所示 VADJ VIN RADJ 5 5 A VISENSE VIN RDSON IL VIN VDS IL为电感的峰值电流当过流时VISENSE大于VADJ时 单脉冲产生器产生一个9 s的脉冲 由其结构可以看出 只要 脚为高电平 无论 脚的电平是高是低 PGATE都将关闭9 s IC LM339 LM324 LM358内销的20寸LCD TVInverter部份由分立元件构成 其核心IC是LM339 LM358 LM324 其中 LM339和LM324集成了4个比较器 LM358集成了2个比较器 INVERTER电源可分成3小部份 调光部分 保护部份 ROYER电路一 调光部分目前市场上的调光主要有两种方式 一种是线性调光 另一种是BurstMode调光 我厂在以前老式的LCD上采用可调电阻线性调光 其缺点是不便于做细微调整又很浪费功率 BurstMode是采用低频波加在反馈端的形式来改变反馈值的大小 从而达到调光的目的 这种模式在OZ960芯片上得到了集成应用 而20寸LCD TV是由分立元件来实现上述功能的 第三讲INVERTER电源部分讲解 三角波发生器部分如下图所示 开始时 Q222没有导通 5V电压通过R267加在IC205的第二脚 反向端 上 IC205即LM358的 引脚与C238 R267组成了积分器 脚电压为5V电压经R268与R285分压决定为2 5V 依据虚短 虚断原理 脚电压也应为2 5V 则积分器反向积分 LM358的 引脚控制积分方向 A点电压由5V电压经R271 R287分压后得到 其值为2 5V 通过R281加到比较器的 脚 正向端 那么积分器的积分输出端加到比较器的反向比较端 当积分值低于比较器直流门限电平时 脚比较输出高电平 通过R290加到Q222基极使其导通 脚电位下降 积分器正向积分 当积分器 脚输出电压高于门限电压时 脚输出低电平 三极管截止 比较器 脚电位升高 积分器又反向积分开始下一个周期 保护部分如下图 如果电源电压不稳 IC206同向输入端 脚电压上升 大于反向输入端 脚基准电压 那么Q221导通Q224接着导通 把B点电位拉高从而拉高C点的电位使得 脚与 脚的电位升高 与三角波进行比较时并无输出 以防止光过调 灯管电流过大 方波发生器部分如下图所示 脚的输出波形分为两路 第一路通过C240加到R278 R273与IC206B 引脚组成反相电压跟随器后 送到IC206C LM324 的 脚 最后与直流电平比较而产生矩形波 通过Q223射极跟随后从Burst L输出 而另一路直接送入IC206D的12脚与直流电平VDim比较后产生矩形波 通过Q220射极跟随后从Burst R输出 把左右两路波形相同但相位相反的矩形波分别加在左右两反馈端 那么两反馈端电压会增加从而达到了调光的目的 2 DC AC部分启动过程当主板给INVERTERON OFF脚发出一个高电平时 Q204饱和导通 拉低Q203的基极 此时Q203导通 Vcc一路通过R211加在IC201 LM339M 的第11脚 即为内部第四比较器的正向输入端 为比较器提供直流电平 另一路通过R219加在第四比较器的反向输入端 10脚 还有一路通过R217使比较器输出一个高电平 输出的高电平加到以Q209为共射级放大电路输入端 共射极输出直接加在由Q206所组成的共基极输入端 共基极好处是补偿由共射电路所带来的米勒效应 拓宽放大频带 实测这里的开关频率为110KHz左右 此时共基极输出为低 PMOSFET导通L201上的电流线性增加 电流通过R201 Q202加到ROYER回路上使其工作 当L202的电流上到一定的时候 D202截止 比较器输出一个低电平 使PMOSFET截止 由D204续流 ROYER回路由电感上的能量供给 此时电感电流线性下降 当下降到一定程度时 D202导通把IC201的10脚拉低 从而第13脚输出高电平使PMOSFET再次打开 下一周期开始 1 保护过程保护回路 由D203 R210 D202构成 如下图所示 如果开关管开启时电压过高 此时把D203击穿 则Q207导通 使Q202的基极电位下降 Q202截止 ROYER回路不工作 从而保护了灯管 保护回路 是由两片LM339M所构成 如下图所示 IC203 IC204 LM339 脚4 6 8分别监控3路灯管电流 11脚监控3路灯管总电流 正常工作时 根据比较器原理 脚4 6 8应该比相应的基准电压高 而11脚的电压应该比基准电压低 以起到对每个灯管的控制以及对整体电流的控制 若有一路反馈电压反常 八个电压比较器的输出将为高电平 Q225导通 拉低IC206的 脚电压 启动调光保护回路 同时Q218也导通 关断Q217 使IC201 脚电压不受保护作用的影响 AC DC12V变换 2 调光过程三个灯管的反馈电流经过由D208 R225 C217 R221 R224 C216 R222 R220 R223 R227组成的反馈网络 得到的反馈电压同另一路取自L201并经过另一反馈网路的反馈电压会合后加在IC201的 脚 也就是第三比较器的反向端 与第 脚的基准电压比较后输出 同时和调光回路的低频电压合并 最后正馈给后极 调光的低频电压同时也加在IC201的第十一脚即第四比较器的正向端 以改变其基准电压来细微调节PWM的占空比 从而达到调光的目的 调光方框图 AC源90 264V 12VTO5VDC DC变换 主板 LM339 BURST MODE调光 ROYER回路 灯管 反馈 自激型推挽式直流变换器是利用开关晶体管和变压器铁芯的磁通量饱和来进行自激振荡 从而实现开关管 开 关 转换的直流变换器 它是由美国人罗耶 G H Royer 在1955年首先发明和设计的 故又称 罗耶变换器 这种变换器的电路结构简单 使用时铁芯饱和 不仅铁芯损耗大 而且晶体管在截止前出现较大IC峰值电流 开关管损耗大 适用于几十W输出功率的电源 目前我们采用Royer电路的转化效率大约为75 85 自激型推挽式 push pull 直流变换器工作原理 阴极冷光灯的特性 冷阴极灯管 coldcathodefluorescentlamp CCFL代表的是一个高非线性负载 一开始当冷光灯是冷却的时候 在一段没有运转的时间内 启动冷光灯的电压是一般的三倍 冷光灯在图一中的特征是 启动电压为1600伏特 一般运作的平均电压是300伏特 请注意 冷光灯在一开始时是正电阻 然后转换为低阻 这些特性表示它具有高输出阻抗 电流源 能抑制负的负载电阻效应 且在启动冷光灯时可以限制电流 因为直流变换器转换器有一个低输出阻抗 所以必须加入一个额外的 无损失 loseless 串联阻抗 例如 一个耦合电容 在图一中 对CCFL的等效电路做分析 VFL是冷光灯在一般操作下的平均电压 冷光灯的阻抗 RFL 是一个复函数 但在固定电压时 可被视为一个固定的负电阻 杂散电容和互连电容结合在一起成为CFL 图一 CCFL的等效电路 4 ROYER电路工作原理 自激型推挽式直流变换器的电路原理 如图2所示 当电压V1加到输入端时 由R224 R226组成的分压电路会产生两个电压并加到两个开关晶体管的基极上 由于电路不可能完全对称 所以总会使一个开关管导通 假定Q209先导通 其集电极电流iC1流过变压器的初级线圈 3 4 5 将使变压器铁芯磁化 在其他线圈中产生感应电动势 V1 由于6端是Q210的基极线圈 故此感应电动势将使晶体管Q210的基极处于负电位 从而使Q210一直处于截止状态 而1端的感应电动势则使V209的集电极电流进一步增加 并使V1很快达到饱和导通状态 由于此时全部输入电压V1都加到初级线圈 3 4 5 两端 因此 3 4 5 中的电流及由此电流产生的磁通也线性增加 当铁芯中的磁通达到或接近磁饱和值 s时 Q209的集电极电流会急剧增大而形成一个尖峰 而此时磁通量的变化率则为零 因而 3 4 5 两端的感应电动势也接近于零 由此将使开关管Q209的基极电流减少 集电极电流下降 整个线圈中产生反向电动势 从而使线圈中的磁通脱离饱和 并促使晶体管Q2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购买建房土地合同(标准版)
- 果树苗木基地创新创业项目商业计划书
- 2025版长期租赁合同样本
- 奶牛节水养殖技术创新创业项目商业计划书
- 2025授权合同样本:软件许可使用合同
- 无公害蔬菜物流配送创新创业项目商业计划书
- 建屋合同(标准版)
- 南京安全员培训及答案
- 2025合同设备修理合同范本
- 2025年私人租房协议
- 【申报书】高职院校高水平专业群建设项目申报书
- 多式联运国际物流项目可行性研究报告
- 《互联网应用新特征》课件+2024--2025学年人教版(2024)初中信息科技七年级全一册
- 蓄水模块专项监理实施细则
- 创业小白实操手册 第2版 课件 6 做原型小验证-课件标准版
- 康复班-高频电疗法课件
- 劳动教育通论1-11章完整版课件
- DL∕T 2559-2022 灯泡贯流式水轮机状态检修评估技术导则
- 《炼油与化工装置机泵 在线监测系统技术规范》
- 租赁车位安装充电桩协议
- JT-T 722-2023 公路桥梁钢结构防腐涂装技术条件
评论
0/150
提交评论