ITK图像配准介绍.docx_第1页
ITK图像配准介绍.docx_第2页
ITK图像配准介绍.docx_第3页
ITK图像配准介绍.docx_第4页
ITK图像配准介绍.docx_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ITK图像配准介绍1.什么叫配准Image registration is the process of determining the spatial transform that maps points from one image to homologous points on a object in the second image.2.配准的框架3TransformIn the Insight Toolkit, itk:Transform objects encapsulate the mapping of points and vectors from an input space to an output space.ITK provides a variety of transforms from simple translation, rotation and scaling to general affine and kernel transforms.下面详细介绍一些主要的变换方法:3.1 Translation Transform3.2 Scale Transform3.3 Euler2DTransform3.4 CenteredRigid2DTransform3.5 Similarity2DTransformcan be seen as a rigid transform combined with an isotropic scaling factor.3.6 AffineTransform3.7 变换的分类4. Interpolators4.1 为什么要插值?4.2 最常用的两种插值方法4.2.1 Nearest Neighbor Interpolation4.2.2 Linear Interpolation5. MetricsIn ITK, itk:ImageToImageMetric objects quantitatively measure how well the transformed moving image fits the fixed image by comparing the gray-scale intensity of the images. These metrics are very flexible and can work with any transform or interpolation method and do not require reduction of the gray-scale images to sparse extracted information such as edges.下面介绍一些常用的Metrics5.1 Mean Squares MetricThe itk:MeanSquaresImageToImageMetric computes the mean squared pixel-wise difference in intensity between image A and B over a user defined region5.2 Normalized Correlation Metric6. OptimizersThe basic input to an optimizer is a cost function object常用的两种方法6.1 Gradient Descent Advances parameters in the direction of the gradient where the step size is governed by a learning rate ( itk:GradientDescentOptimizer).6.2 Regular Step Gradient DescentAdvances parameters in the direction of the gradient where a bipartition scheme is used to compute the step size (itk:RegularStepGradientDescentOptimizer).7.一个简单的例子实现平移配准#include itkImageRegistrationMethod.h#include itkTranslationTransform.h#include itkLinearInterpolateImageFunction.h#include itkMeanSquaresImageToImageMetric.h#include itkRegularStepGradientDescentOptimizer.h#include itkImage.h#include itkImageFileReader.h#include itkImageFileWriter.h#include itkResampleImageFilter.h#include itkCommand.hclass CommandIterationUpdate : public itk:Commandpublic:typedef CommandIterationUpdate Self;typedef itk:Command Superclass;typedef itk:SmartPointer Pointer;itkNewMacro( Self );protected:CommandIterationUpdate() ;public:typedef itk:RegularStepGradientDescentOptimizer OptimizerType;typedef const OptimizerType * OptimizerPointer;void Execute(itk:Object *caller, const itk:EventObject & event)Execute(const itk:Object *)caller,event);void Execute(const itk:Object * object, const itk:EventObject & event)OptimizerPointer optimizer = dynamic_cast ( object );if( ! itk:IterationEvent().CheckEvent( &event)return;std:cout GetCurrentIteration() std:endl;std:cout GetValue() std:endl;std:cout GetCurrentPosition() std:endl;int main()const unsigned int Dimension = 2;typedef unsigned char PixelType;typedef itk:Image FixImageType;typedef itk:Image MoveImageType;typedef itk:TranslationTransform TransformType;typedef itk:LinearInterpolateImageFunction InterpolateType;typedef itk:MeanSquaresImageToImageMetric MetricType;typedef itk:RegularStepGradientDescentOptimizer OptimizerType;typedef itk:ImageRegistrationMethod RegistrationType;TransformType:Pointer transform = TransformType:New();InterpolateType:Pointer interpolator = InterpolateType:New();MetricType:Pointer metric = MetricType:New();OptimizerType:Pointer optimizer = OptimizerType:New();RegistrationType:Pointer registration = RegistrationType:New();registration-SetTransform( transform );registration-SetInterpolator( interpolator );registration-SetMetric( metric );registration-SetOptimizer( optimizer );typedef itk:ImageFileReader FixedImageReaderType;typedef itk:ImageFileReader MoveImageReaderType;FixedImageReaderType:Pointer fixedImageReader = FixedImageReaderType:New();MoveImageReaderType:Pointer moveImageReader = MoveImageReaderType:New();const char* FixedImageRoot = D:picBFixed.png;const char* MoveImageRoot = D:picBMove2.png;fixedImageReader-SetFileName( FixedImageRoot );moveImageReader-SetFileName( MoveImageRoot );registration-SetFixedImage( fixedImageReader-GetOutput();registration-SetMovingImage( moveImageReader-GetOutput();fixedImageReader-Update();registration-SetFixedImageRegion( fixedImageReader-GetOutput()-GetBufferedRegion();typedef RegistrationType:ParametersType ParametersType;ParametersType initialParameters( transform-GetNumberOfParameters() );initialParameters0 = 0.0;initialParameters1 = 0.0;registration-SetInitialTransformParameters ( initialParameters );optimizer-SetMaximumStepLength ( 4.00 );optimizer-SetMinimumStepLength ( 0.05 );optimizer-SetNumberOfIterations( 200 );CommandIterationUpdate:Pointer observer = CommandIterationUpdate:New();optimizer-AddObserver( itk:IterationEvent(), observer );tryregistration-StartRegistration();std:cout Optimizer stop condition: GetOptimizer()-GetStopConditionDescription() std:endl;catch( itk:ExceptionObject &err )std:cerr ExceptionObject caught ! std:endl;std:cerr err GetLastTransformParameters();const double TranslationAlongX = finalParameters0;const double TranslationAlongY = finalParameters1;const unsigned int numberOfIterations = optimizer-GetCurrentIteration();const double bestValue = optimizer-GetValue();std:cout TranslationAlongX = TranslationAlongX std:endl;std:cout TranslationAlongY = TranslationAlongY std:endl;std:cout numberOfIterations = numberOfIterations std:endl;system(pause);typedef itk:ResampleImageFilter ResampleFilterType;ResampleFilterType:Pointer resampler = ResampleFilterType:New();resampler-SetInput( moveImageReader-GetOutput() );resampler-SetTransform( registration-GetOutput()-Get() );FixImageType:Pointer fixedImage = fixedImageReader-GetOutput();resampler-SetSize( fixedImage-GetLargestPossibleRegion().GetSize() );resampler-SetOutputOrigin( fixedImage-GetOrigin() );resampler-SetOutputSpacing( fixedImage-GetSpacing() );resampler-SetOutputDirection( fixedImage-GetDirection() );resampler-SetDefaultPixelValue( 100 );/typedef itk:ImageFileWriter WriterType;typedef itk:Image OutputImageType;typedef itk:ImageFileWriter WriterType;WriterType:Pointer writer = WriterType:New();/CastFilterType:Pointer caster = CastFilterType:New();const char* writeFile = D:picwrite.png;writer-SetFileName( writeFile );/caster-SetInput( resampler-GetOutput() );/writer-SetInput( caster-GetOutput() );writer-SetInput( resampler-GetOutput();trywriter-Update();catch( itk:ExceptionObject &err )std:cerr ExceptionObject caught ! std:endl;std:cerr err std:endl;system(pause);return -1;return 0 ;8. Multi-Resolution RegistrationMulti-Resolution配准方法,可以增强配准的准确性,速度以及鲁棒性。如图所示,它为多次配准。采用金字塔模型,从第一次的粗糙配准到后面越来越细致

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论