


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲导数与不等式1设a为实数,函数f(x)ex2x2a,xR.(1)求f(x)的单调区间与极值;(2)求证:当aln 21且x0时,exx22ax1.解:(1)由f(x)ex2x2a(xR),知f(x)ex2.令f(x)0,得xln 2.当xln 2时,f(x)ln 2时,f(x)0,故函数f(x)在区间(ln 2,)上单调递增所以f(x)的单调递减区间是(,ln 2),单调递增区间是(ln 2,),f(x)在xln 2处取得极小值f(ln 2)eln 22ln 22a22ln 22a,无极大值(2)证明:要证当aln 21且x0时,exx22ax1,即证当aln 21且x0时,exx22ax10.设g(x)exx22ax1(x0)则g(x)ex2x2a,由(1)知g(x)ming(ln 2)22ln 22a.又aln 21,则g(x)min0.于是对xR,都有g(x)0,所以g(x)在R上单调递增于是对x0,都有g(x)g(0)0.即exx22ax10,故exx22ax1.2(2019贵阳模拟)已知函数f(x)mexln x1.(1)当m1时,求曲线yf(x)在点(1,f(1)处的切线方程;(2)若m(1,),求证:f(x)1.解:(1)当m1时,f(x)exln x1,所以f(x)ex,所以f(1)e1,又因为f(1)e1,所以曲线yf(x)在点(1,f(1)处的切线方程为y(e1)(e1)(x1),即y(e1)x.(2)证明:当m1时,f(x)mexln x1exln x1,要证明f(x)1,只需证明exln x20,设g(x)exln x2,则g(x)ex(x0),设h(x)ex(x0),则h(x)ex0,所以函数h(x)g(x)ex在(0,)上单调递增,因为ge20,所以函数g(x)ex在(0,)上有唯一零点x0,且x0,因为g(x0)0,所以ex0,即ln x0x0,当x(0,x0)时,g(x)0,所以当xx0时,g(x)取得最小值g(x0),故g(x)g(x0)ex0ln x02x020,综上可知,若m(1,),则f(x)1.3(2019济南市学习质量评估)已知函数f(x)x(ex1)a(ex1)(1)若曲线yf(x)在点(1,f(1)处切线的斜率为1,求实数a的值;(2)当x(0,)时,f(x)0恒成立,求实数a的取值范围解:(1)f(x)xexex1aex.因为f(1)ee1ae1,所以a2.(2)设g(x)f(x)ex1xexaex,则g(x)ex(x1)exaex(x2a)ex,设h(x)x2a,注意到f(0)0,f(0)g(0)2a,(i)当a2时,h(x)x2a0在(0,)上恒成立,所以g(x)0在(0,)上恒成立,所以g(x)在(0,)上是增函数,所以g(x)g(0)2a0,所以f(x)0在(0,)上恒成立所以f(x)在(0,)上是增函数,所以f(x)f(0)0在(0,)上恒成立,符合题意(ii)当a2时,h(0)2a0,x0(0,a),使得h(x0)0,当x(0,x0)时,h(x)0,所以g(x)0,所以g(x)在(0,x0)上是减函数,所以f(x)在(0,x0)上是减函数所以f(x)f(0)2a0,所以f(x)在(0,x0)上是减函数,所以当x(0,x0)时,f(x)1时,f(x)0时无零点(ii)当a0时,g(x)0,所以g(x)在(0,)上单调递增,取x0e,则g(x0)g(e)10,因为g(1)1,所以g(x0)g(1)0,此时函数g(x)恰有一个零点(iii)当a0时,令g(x)0,解得x.当0x时,g(x)时,g(x)0,所以g(x)在上单调递增要使函数g(x)恰有一个零点,则galn 0,即a2e.综上所述,若函数g(x)恰有一个零点,则a2e或a0.(2)令h(x)f(x)(1m)x2mx2(2m1)xln x,根据题意,当x(1,)时,h(x)0恒成立h(x)2mx(2m1).(i)若0m0恒成立,所以h(x)在上是增函数,且h(x),所以不符合题意(ii)若m,则x(1,)时,h(x)0恒成立,所以h(x)在(1,)上是增函数,且h(x),所以不符合题意(iii)若m0,则x(1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 情系你我安全大家培训课件
- 陕建入职考试真题及答案
- 恶性心律失常护理查房
- 医院专业考试题目及答案
- 急救知识培训结构化课件
- 刑事诉法学考试题及答案
- 养老护理员考试题及答案
- 吉林高考试卷题目及答案
- 2025年中国联通校园招聘通信工程专业的模拟题与答案解析
- 快递装车安全培训材料课件
- 2024年新人教版数学七年级上册全册课件
- 企业首席质量官职业技能竞赛竞赛题库(最后附答案)
- 人教版(2024新版)七年级上册英语全册教案
- 临床微生物学检验标本的采集和转运试卷
- 佳酿贺喜升学宴金榜题名踏新程热烈庆祝某同学金榜题名模板
- 医学美容技术专业《美容医学咨询与沟通》课程标准
- 营养指导员理论知识考试题库及答案
- 2024生产安全事故隐患排查治理规定(修订征求意见稿)
- JB-T 14509-2023 反渗透海水淡化设备技术规范
- 2024年儿童保健考试复习题库(含答案)
- 砖厂机械伤害安全培训课件
评论
0/150
提交评论