2.2 内压薄壁容器的应力分析.ppt_第1页
2.2 内压薄壁容器的应力分析.ppt_第2页
2.2 内压薄壁容器的应力分析.ppt_第3页
2.2 内压薄壁容器的应力分析.ppt_第4页
2.2 内压薄壁容器的应力分析.ppt_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 2 2内压薄壁容器设计 重点 薄膜理论及其应用难点 1 回旋壳体的应力分析2 内压薄壁容器强度计算 2 回转壳体 由回转曲面作中间面形成的壳体 回转曲面 由平面直线或平面曲线绕其同平面内的回转轴回转一周所形成的曲面 中间面 平分壳体厚度的曲面称为壳体的中间面 中间面与壳体内外表面等距离 它代表了壳体的几何特性 2 2 1回转壳体的几何特性 1 基本概念 轴对称 几何形状 约束条件和所受外力都对称于回转轴 3 轴对称问题 几何形状 所受外力 约束条件 均对称于回转轴 环工用压力容器通常都属于轴对称问题 本章研究的是满足轴对称条件的薄壁壳体 4 母线 形成回转壳体中间面的那条直线或平面曲线 如图所示的回转壳体即由平面曲线AB绕OA轴旋转一周形成 平面曲线AB为该回转体的母线 注意 母线形状不同或与回转轴的相对位置不同时 所形成的回转壳体形状不同 图3 3回转壳体的几何特性 旋转壳体的几何概念 5 经线 通过回转轴的平面与中间面的交线 如AB AB 经线与母线形状完全相同 法线 过中间面上的点M且垂直于中间面的直线n称为中间面在该点的法线 法线的延长线必与回转轴相交 6 纬线 以法线NK为母线绕回转轴OA回转一周所形成的园锥法截面与中间面的交线CND圆 K 平行圆 垂直于回转轴的平面与中间面的交线称平行圆 显然 平行圆即纬线 7 第一曲率半径R1 第二曲率半径R2 中间面上任一点M处经线的曲率半径为该点的 第一曲率半径 通过经线上一点M的法线作垂直于经线的平面 其与中间面相交形成的曲线ME 此曲线在M点处的曲率半径称为该点的第二曲率半径R2 第二曲率半径的中心落在回转轴上 其长度等于法线段MK2 8 曲率及其计算公式 在光滑弧上自点M开始取弧段 其长为 对应切线 定义 弧段上的平均曲率 点M处的曲率 注意 直线上任意点处的曲率为0 转角为 9 例1 求半径为R的圆上任意点处的曲率 解 如图所示 10 故曲率计算公式为 又 曲率K的计算公式 二阶可导 设曲线弧 则由 11 曲率圆与曲率半径 设M为曲线C上任一点 在点 在曲线 把以D为中心 为半径的圆叫做曲线在点M处的 曲率圆 叫做曲率半径 D叫做 曲率中心 M处作曲线的切线和法线 的凹向一侧法线上取点D使 12 小位移假设 直法线假设 不挤压假设 壳体受力后 壳体中各点的位移远小于壁厚 利用变形前尺寸代替变形后尺寸 壳体在变形前垂直于中间面的直线段 在变形后仍保持为直线段 并且垂直于变形后的中间面 壳体各层纤维变形前后均互不挤压 假定材料具有连续性 均匀性和各向同性 即壳体是完全弹性的 2 无力矩理论 薄膜应力理论 基本假设 13 经向应力 MPap 工作压力 MPaR2 第二曲率半径 mm 壁厚 mm 用假想截面将壳体沿经线的法线方向切开 即平行圆直径D处有垂直于经线的法向圆锥面截开 取下部作脱离体 建立静力平衡方程式 思考 为什么不能用横截面 2 2 2回转壳体薄膜应力分析 1 薄膜应力理论的计算公式 截面法 见p77 图2 5 经向应力计算公式 14 Z轴上的合力为Pz 作用在截面上应力的合力在Z轴上的投影为Nz 在Z方向的平衡方程 A 回转壳体的经向应力分析 图2 6回转壳体上的径向应力分析 2 2 15 截面1 截面2 截面3 壳体的内外表面 两个相邻的 通过壳体轴线的经线平面 两个相邻的 与壳体正交的园锥法截面 经向应力 MPa 环向应力 MPap 工作压力 MPaR1 第一曲率半径 mmR2 第二曲率半径 mm 壁厚 mm 环向应力计算公式 微体平衡方程式 图2 7确定环向应力微元体的取法 截取微元体 16 微元体abcd的受力 上下面 内表面 p环向截面 微元体受力放大图 图2 8微小单元体的应力及几何参数 17 内压力p在微体abcd上所产生的外力的合力在法线n上的投影为Pn 在bc与ad截面上经向应力的合力在法线n上的投影为Nmn 在ab与cd截面上环向应力的合力在法线n上的投影为 B 回转壳体的经向环向应力分析 图2 9回转壳体的环向应力分析 18 根据法线n方向上力的平衡条件 得到 0 即 微元体的夹角和很小 可取 2 3 代入上式 各项均除以整理得 2 4 19 薄膜理论它适用的范围是薄壳 同时还应满足以下条件 回转壳体曲面在几何上是轴对称 壳体厚度无突变 曲率半径是连续变化的 材料是各向同性的 且物理性能 主要是E和 应当是相同的 载荷在壳体曲面上的分布是轴对称和连续的 壳体边界的固定形式应该是自由支承的 壳体在边界上无横向剪力和弯矩 Di 0 1或Do Di 1 2 无力矩理论是在旋转薄壳的受力分析中忽略了弯矩的作用 此时应力状态和承受内压的薄膜相似 又称薄膜理论 2 薄膜理论的应用范围 20 区域平衡方程式 微体平衡方程式 2 2 3典型回转壳体的应力分析与薄膜理论的应用 2 4 2 2 21 1 受内压的圆筒形壳体 图2 10受内压的圆筒形壳体 22 讨论1 薄壁圆筒上开孔的有利形状 环向应力是经向应力的2倍 所以环向承受应力更大 环向上就要少削弱面积 故开设椭圆孔时 椭圆孔之短轴平行于筒体轴线 见图 图2 11薄壁圆筒上开孔 讨论2 介质与压力一定 壁厚越大 是否应力就越小 23 2 受内压的球形壳体 讨论 对相同的内压 球壳应力比同直径 同厚度的圆筒壳的应力有何不同呢 结论 对相同的内压 球壳的环向应力要比同直径 同厚度的圆筒壳的环向应力小一半 这是球壳显著的优点 24 椭圆壳经线为一椭圆 a b分别为椭圆的长短轴半径 其曲线方程 3 受内压的椭球壳 第一曲率半径R1 2 9 25 如图 自任意点A x y 作经线的垂线 交回转轴于O点 则OA即为R2 根据几何关系 可得 第二曲率半径R2 图2 12椭球壳的应力分析 2 10 26 把R1和R2的表达式代入微体平衡方程及区域平衡方程得 a b 分别为椭球壳的长 短半径 mm x 椭球壳上任意点距椭球壳中心轴的距离mm其它符号意义与单位同前 应力计算公式 2 11 2 12 27 由和的公式可知 在x 0处 在x a处 椭圆形封头的应力分布 1 在椭圆形封头的中心 x 0处 经向应力与环向应力相等 2 经向应力恒为正值 是拉应力 且最大值在x 0处 最小值在x a处 3 周向应力最大值在x 0处 最小值在x a处 如 图2 13 28 顶点应力最大 经向应力与环向应力是相等的拉应力 顶点的经向应力比边缘处的经向应力大一倍 顶点处的环向应力和边缘处相等但符号相反 应力值连续变化 标准椭圆形封头a b 2 在x 0处 在x a处 图2 15椭圆形封头的应力分布 结论 29 圆锥形壳半锥角为 A点处半径r 厚度为 则在A点处 4 受内压的锥形壳体 图2 16锥壳的应力分析 30 锥形壳体环向应力是经向应力两倍 随半锥角a的增大而增大 角要选择合适 不宜太大 锥顶 锥底各点应力 锥形封头的应力分布 结论 在锥形壳体大端r R时 应力最大 在锥顶处 应力为零 因此 一般在锥顶开孔 31 5 受液体静压作用的圆筒壳体 1 沿底部边缘支承的圆筒 图2 17 筒体上任一点的压力为 由式 2 4 得 环向应力 2 17 而径向应力为0 因为轴向力直接传给了支座 只有气压po才引起经向应力 如果容器是敞开的po 径向应力为0 2 沿顶部边缘支承的圆筒 略 32 例2 1 有一外径为219mm的氧气瓶 最小壁厚为 6 5mm 材质为40Mn2A 工作压力为15MPa 试求氧气瓶筒体壁内部的应力 解 氧气瓶筒体平均直径 mm 经向应力 MPa 环向应力 MPa 33 例2 2 有一圆筒形容器 两端为椭圆形封头 已知圆筒平均直径D 2020mm 壁厚 20mm 工作压力p 2MPa 1 试求筒身上的经向应力和环向应力 2 如果椭圆形封头的a b分别为2 和3 封头厚度为20mm 分别确定封头上最大经向应力与环向应力及最大应力所在的位置 例2 2附图 1 34 解 求筒体应力 经向应力 环向应力 2 求封头上最大应力 a b 2时 a 1010mm b 505mm 在x 0处 在x a处 最大应力有两处 一处在椭圆形封头的顶点 即x 0处 一处在椭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论