




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 3空间几何体的表面积与体积1 3 1柱体 锥体 台体的表面积与体积 目标导航 新知探求 课堂探究 新知探求 素养养成 点击进入情境导学 知识探究 1 柱体 锥体 台体的表面积 1 棱柱 棱锥 棱台的表面积棱柱 棱锥 棱台是由多个平面图形围成的多面体 它们的表面积就是各个面的和 面积 2 圆柱 圆锥 圆台的表面积公式 底面半径 侧面母线长 底面半径 侧面母线长 上底面半径 下底面半径 侧面母线长 探究1 把一张长为6 宽为4的矩形纸片卷成一个圆柱形 使其对边恰好重合 所围矩形的底面半径是多少 2 柱体 锥体与台体的体积公式 底面积 高 底面积 高 上 下底面面积 高 探究2 探究1中所得圆柱的体积是多少 自我检测 1 求体积 已知圆锥的母线长为5 底面周长为6 则它的体积为 A 36 B 30 C 24 D 12 D 2 圆台的体积 圆台上 下底面面积分别是 4 侧面积是6 这个圆台的体积是 D 3 面积与体积 长方体三个面的面积分别为2 6和9 则长方体的体积是 A 4 求表面积 一个圆柱和一个圆锥的轴截面分别是边长为a的正方形和正三角形 则它们的表面积之比为 答案 2 1 题型一 空间几何体的表面积 例1 将圆心角为120 面积为3 的扇形作为圆锥的侧面 则圆锥的表面积为 课堂探究 素养提升 答案 4 方法技巧 1 多面体的表面积转化为各面面积之和 2 解决有关棱台的问题时 常用两种解题思路 一是把基本量转化到直角梯形中去解决 二是把棱台还原成棱锥 利用棱锥的有关知识来解决 3 旋转体中 求面积应注意侧面展开图 上下面圆的周长是展开图的弧长 圆台通常还要还原为圆锥 即时训练1 1 如图在底面半径为2 母线长为4的圆锥中内接一个高为的圆柱 求圆柱的表面积 备用例1 1 已知一个圆柱的侧面展开图是一个正方形 这个圆柱的全面积与侧面积的比是 答案 1 A 2 如图直四棱柱ABCD A1B1C1D1 底面ABCD为直角梯形 AB AD 各棱长如图 则棱柱ABCD A1B1C1D1的表面积为 答案 2 92 3 圆台的上 下底面半径和高的比为1 4 4 若母线长为10 则圆台的表面积为 答案 3 168 题型二 空间几何体的体积 例2 12分 圆锥的轴截面是等腰直角三角形 侧面积是16 求圆锥的体积 方法技巧 1 常见的求几何体体积的方法 公式法 直接代入公式求解 等积法 如四面体的任何一个面都可以作为底面 只需选用底面积和高都易求的形式即可 分割法 将几何体分割成易求解的几部分 分别求体积 2 求几何体体积时需注意的问题柱 锥 台的体积的计算 一般要找出相应的底面和高 要充分利用截面 轴截面 求出所需要的量 最后代入公式计算 即时训练2 1 如图 在三棱柱A1B1C1 ABC中 D E F分别是AB AC AA1的中点 设三棱锥F ADE的体积为V1 三棱柱A1B1C1 ABC的体积为V2 则V1 V2 答案 1 24 备用例2 1 已知圆柱的侧面展开图是长 宽分别为4 和2 的矩形 求这个圆柱的体积 解 1 设圆柱的底面半径为R 高为h 当圆柱的底面周长为2 时 h 4 由2 R 2 得R 1 所以V圆柱 R2h 4 2 当圆柱的底面周长为4 时 h 2 由2 R 4 得R 2 所以V圆柱 R2h 4 2 8 2 所以圆柱的体积为4 2或8 2 2 如图 圆台高为3 轴截面中母线AA1与底面直径AB的夹角为60 轴截面中一条对角线垂直于腰 求圆台的体积 题型三 组合体的表面积与体积 例3 如图所示 一圆柱内挖去一个圆锥 圆锥的顶点是圆柱底面的圆心 圆锥的底面是圆柱的另一个底面 圆柱的母线长为6 底面半径为2 则该组合体的表面积等于 体积等于 方法技巧求组合体表面积与体积时应注意的问题 1 首先应弄清它的组成 其表面有哪些底面和侧面 各个面应怎样求其面积 然后把这些面的面积相加或相减 求体积时也要先弄清组成 求出各简单几何体的体积 然后再相加或相减 2 在求组合体的表面积 体积时要注意 表面 和外界直接接触的面 与 体积 几何体所占空间的大小 的定义 以确保不重复 不遗漏 即时训练3 1 如图 在多面体ABCDEF中 已知ABCD是边长为1的正方形 且 ADE BCF均为正三角形 EF AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年骨科手术操作技能验证测试答案及解析
- 2024年秦皇岛市高校毕业生招聘真题
- 2025年职业病防护专业知识答案及解析
- 2025年妇产科护理常见疾病的护理技能考核试卷答案及解析
- 2025标准版设备采购合同样式
- 第六课 来客人啦教学设计-2025-2026学年小学心理健康南大版一年级-南大版
- 2025年医学心理学临床应用案例分析答案及解析
- 2025年消化内科胃肠道疾病诊疗要点考核答案及解析
- 2025年康复医学中风康复训练评估考试卷答案及解析
- 2025年职业病防治法规与劳动者健康监护答案及解析
- 2024-2025学年广东省汕头市金平区七年级(下)期末数学试卷
- 景区拥挤踩踏知识培训课件
- Ⅲ类射线装置辐射工作人员培训考试题(附答案)
- 2025-2026学年济南版(2024)初中生物八年级上册教学计划及进度表
- 军队骨干岗位申请书
- 高职高专教育英语课程教学基本要求A级-附表四
- 《宁夏闽宁镇:昔日干沙滩-今日金沙滩》课件-高教版中职语文职业模块
- 湖北省2025届高三(9月)起点考试 英语试卷(含答案)
- 中建技术降本增效案例集
- 五年级上册美术教学计划
- 有色金属贵金属冶金
评论
0/150
提交评论