




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013上海中考数学满分攻略 第一部分:中考数学考情研究一、代数和几何的比例 150分内代数约占80分,几何约占70分,比例在87。二、各章节分值情况1、方程(13分左右)和函数(32分左右)占较大的比重 ,历年来函数部分所涵盖的知识点基本考查到位,但是难度呈降低态势。2、统计的分值约占15分 3、锐角三角比板块分值与统计类似,约占15分。4、二次根式、因式分解、不等式分值约占15分。5三角形,.四边形,相似三角形,圆约占60分,几何板块是考试重心,历年来其难度呈平稳态势(2007除外)。但尤其是二次函数,相似三角形及圆三者综合在一起的大题难度较大,此类大题既考查同学们对“图形模板”的认知能力,更考查在陌生的图形情境下推理能力,同时又有一定的代数计算量,所以只有平日里勤学苦练多动脑筋多问问题的学生方能取得好分数,试图侥幸过关不可取。三、考点分析 1、方程:(1)解方程(组):主要是解分式方程、无理方程(这两类方程一定要验根)及二元二次方程组。 (2)换元(化为整式方程)。 (3)一元二次方程根与系数关系的应用:主要是求方程中的系数。 (4)列方程解应用题(尚未出现在解答题题中)。“方程与不等式”的考法一般可分为如下的三大类:技能层面上的题目多以考方程与不等式的解法为主;能力层面上的题目(“列方程或不等式”解应用题)多以情境化的形式出现;“方程思想”层面上的应用:一是以“横向”联系、“知识综合”、“解决实际问题或变化过程的即时性(阶段性)问题”为主.二是关注试题和现实生活紧密联系的一些热点问题 2、函数(1)求函数解析式及定义域,其中以二次函数居多,但某些解答题中求出一次函数的解析式往往是解题的关键。(2)二次函数与一元二次方程结合求系数和求与坐标轴交点。 (3)函数与几何结合求值(常出现的是和相似三角形结合)或证明。 3、几何证明及计算 (1)特殊三角形的边、角计算(2)特殊四边形的性质应用及判定(3)三角形和梯形的中位线性质及应用(5)全等三角形、相似三角形的判定和性质应用(6)正多边形的对称性问题(7)圆与圆的位置判定方法,圆与直线位置关系判定方法,圆的垂径定理(必考),切线长定理,圆的切线判定及性质(8)图形运动问题(平移、旋转、翻折)(9)几何图形与锐角三角比结合证明或计算(10)几何图形与函数结合证明或计算 (压轴题第一问求y关于x的函数关系式便是此类题)注:相似三角形的考察力度弥久不衰,抛物线的顶点对称轴亦是逢考必有,垂径定理中的添作弦心距更是要铭记在心。 4、 统计 (1)求平均数。(2)求中位数。(3)求数据总数。(4)求频率。(5)与方程结合。(6)根据图像回答有关问题。如补齐图形。(7)用统计学知识判断某些统计方法的合理性。重视数学与生活的联系,尤其是热点问题及背景模型的能力解决四、出现得比较多的考点 1、圆与正多边形知识的考查 2、统计方面的知识点 至少有一道大题是关于统计方面。而且都与图表相联系。 3、化简 、解方程 、一元二次方程根与系数关系 、根的判别式由于一元二次方程和二次函数有较大的关系,因此,这方面的内容有较多的考查点及考查形式,但是新教材中由于一元二次方程根与系数关系出现在拓展2中,已经不在属于或不会进入考试范围。4、几何图形运动 :有2题左右出现 (填空题最后一道无图题便是如此,它给予的信息量大,考查考生的的阅读理解能力 、空间想象能力以及计算水平,难度较大)5、几何和代数结合 几何证明题很多都是与代数的内容相结合,特别是和函数的内容结合起来,历年中考最后一道压轴题都是综合考查数形结合、分类讨论及方程思想。五、 值得关注的几个问题 1、中考立足“双基”故基础题量大,考生答题时要特别注意速度,但要保证准确率。2、试题趋向简约流畅,不是拘泥于数学知识、技巧,而是突出对数学思想方法的考查。大量精心训练各区县近三年来一模二模试卷以及近五年中考真题,用心感悟其中的规律与变化。3、创设具有实际背景的应用性问题,考查学生运用知识的能力 应用类试题为各种类型的应用问题,创设比较熟悉的生活背景 ,结合社会热点设计,如2000年的第27题“拖拉机的噪声影响问题”,2007年第21题“学生上网时间调查”、药品降价问题,2008年的“旅游问题”,“建筑图纸缩略图”等。突出考查学生用数学知识、思想方法解决实际问题的能力。这类问题把重心放在了分析问题,解决问题上,对技能的要求不是很高,但注重基本知识的灵活运用。4、对学生的探究能力开始有一定的要求。去年在最后两大题的最后一问中都有体现,许多考生考到140分以上的学生就是最后这两小问的探索中没有考虑到分类讨论需要全面,关键找到分类的标准和对临界问题的思考。 总的说来,这类试题不拘一格,无现成的模式可套,突出探索、发现和创造。设问方式灵活多样,探求的结论广泛、灵活,甚至隐去结论,留出空间让学生想象、发挥和创造。 5、几何证明题注重对探索、分析、猜想、归纳能力的考查。几何题在内容上和函数、三角比等相结合,综合考查学生的应用知识的能力。去年的第23题,是一道纯粹的几何论证,考查的知识点有等腰三角形、菱形和正方形的判定。论证方法灵活,过程简单,大部分同学都有办法解决,这是今后几何证明考查的方向。尤其是本题是课本习题的条件变式,从课本习题演化而来,学生不会感觉陌生。今年的最后一道几何题还是与函数相结合的综合问题,与往年比较,难度在提高,但是在模拟考中已经有很多体现。 6、考点的隐蔽性 :有些问题进行了“改头换面”需要对问题分析后才能找到解决问题的方法。如2009年第22题,似乎是考统计,实际是方程增长率问题。去年的第24题对于点的位置有两种情况,也有一定的隐秘性。 六、考试策略 1)上海中考数学难易题分值分布大致为:基础题:提高题:难题=8:1:1。考生们想要赢得高分务必做到:确保基础题细心做,不丢分;提高题努力做,少失分;难题(最后一题)尽量做,多得分!2)作试卷的答题原则与技巧:在数学答题过程中,要正确、仔细、认真地审题,将审题贯穿整个解题过程之中。要遵循先易后难,先简后繁,合理用时,审题要慢,答题要快,积极联想,大胆类比,立足一次成功的解题原则。最后要重视复查收尾和分段得分的环节,就一定能取得满意的成绩!3)对于压轴题:多思考关联知识点的常规图形,几何部分找函数关系时等式的建立大多数是利用勾股定理和相似三角形的性质等,最后一问的求值往往和上一问相关,多想一想数学课本中几何部分有哪些等式,从而采用方程思想来解决问题。总之,2013的中考题型在保留开放型、动手操作型、识图、阅读理解型、读图、画图、读表型、会增加方案设计型、猜想型、探索“存在”或“可能”型等新的试题形式。几何证明题是同一体系内纵向整合,注重基本知识基本能力的融合,应用题是圆的垂径定理和列方程解应用题的横向整合,体现了实际应以用思想,压轴题把几何论证、计算和数形结合、分类讨论、运动问题联系起来,而应用题的情景将更新,如“磁悬浮、洋山深水港、东海大桥等、国际汽油涨价、台湾水果零关税进入、人民币升值、利息税、个税起征点的调整”等新的问题情境将进入命题人的视野,在技巧、方法的要求上不会过高,但运用的数学知识的难度在一元一次方程的基础上会有所加大。具体复习做到:1)主要记忆课本中的公式,定义,要熟练,做到张口就来。 2)要多做习题,目的是要从习题中掌握学习的技术和窍门,不同的题有不同的方法,不同的技巧,尤其是函数中的动点题是现在出题的热点要多做,但不要做太难的题,以会为主。学习重点是函数(包括一次函数,正比例函数,反比例函数,二次函数),重点是意义和性质;三角形(包括基本性质,相似,全等,旋转,平移,对称等);四边形(包括平行四边形,梯形,棱形,长方形,正方形,多边形)的性质,定义,面积。第二部分:满分攻略(1) 基础分一分都不能少上海中考向来重视“双基”,这不仅是普及初等数学知识的必然要求,也是为广大考生将来升入高中乃至大学数学学习奠定扎实基础之需。中考是选拔性考试,其目的是让教育资源分配最优化,但是其录取比例较大,故决定了考试卷面中基础占比较大。所以考生在接下来掐指可数的日子里,仍然要大量训练基础题(指除填空最后一道,24,25道外的所有题),通过习题来建构初中数学知识结构,强化记忆曾经学过的书本知识,包括数学公式,几何图形的性质应用与判定方法,常见的辅助线添法和解题模板。很多同学在大考中往往“阴沟里翻船”在这一块无谓的丢分,“痛定思痛”之后一味抱怨自己粗心是不明智的,理性的做法是回归书本,夯实基础,在错题本上记下容易混淆的知识点,多问老师多做类似题多总结,长此以往,“功夫硬了”,自然是零失误。(2) 提高题争取满分上海中考提高题一般分布在填空题最后一道以及解答题第24道。能否跻身140分行列,很大程度取决这两题的对否。(1) 填空题最后一道解题策略近年来上海中考填空题最后一道几乎没有给出过终结图形,加之题目信息量大图形变化情况多,很多考生无所适从,答对率总体偏低。那么如何攻破此类题呢?首先:我认为学生们在心里上要祛除以往失败带来的“心理阴影”,建立战胜它的信心与决心!凡是皆有规律可循,只是有的人爱动脑发现的早,有的人懒惰没有发现而已。以下我枚举近几年的最后一道填空题,大家和我一起来鉴赏一下,看是否有律可循。(2010上海)18.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_考点:旋转的性质;正方形的性质。分析:题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC上的点”,所以有两种情况,即一个是逆时针旋转,一个顺时针旋转,根据旋转的性质可知解答:解:如图:顺时针旋转得到F1点,AE=AF1,AD=AB,D=ABC=90,ADEABF1, F1C=1;逆时针旋转得到F2点,同理可得ABF2ADE,F2B=DE=2,F2C=F2B+BC=5点评:本题主要考查了图形变化之旋转的性质(2011上海)18.RtABC中,已知C=90,B=50,点D在边BC上,BD=2CD(如图)把ABC绕着点D逆时针旋转m(0m180)度后,如果点B恰好落在初始RtABC的边上,那么m=_考点:旋转的性质;Rt的性质。分析:本题可以将图形的旋转问题转化为点B绕D点逆时针旋转的问题,故可以D点为圆心,DB长为半径画弧,第一次与原三角形交于斜边AB上的一点B,交直角边AC于B,此时DB=DB,DB=DB=2CD,由等腰三角形的性质求旋转角BDB的度数,在RtBCD中,解直角三角形求CDB,可得旋转角BDB的度数解答:解:如图,在线段AB取一点B,使DB=DB,在线段AC取一点B,使DB=DB,旋转角m=BDB=180DBBB=1802B=80,在RtBCD中,DB=DB=2CD,CDB=60,旋转角BDB=180CDB=120故答案为:80或120点评:本题考查了旋转的性质关键是将图形的旋转转化为点的旋转,求旋转角。(2012上海)18.如图,在中,点在上,将沿直线翻折后,将点落在点处,如果,那么线段的长为 考点:翻折变换(折叠问题)。分析:本题考查的是三角形的整体翻折问题,只需要牢牢记住翻折前后对应边相等对应角相等这一不二准则即可。当然此题也考查了特殊角三角比的应用,此点是每个合格的初三毕业生必须牢记心中的!解答:解:如图:在RtABC中,C=90,A=30,BC=1,AC=,将ADB沿直线BD翻折后,将点A落在点E处,ADB=EDB,DE=AD,ADED,CDE=ADE=90,EDB=ADB=135,CDB=EDBCDE=13590=45,C=90,CBD=CDB=45,CD=BC=1,DE=AD=ACCD=1故答案为:1点评:本题考查了图形变化之翻折的性质三道填空题鉴赏完毕,不难发现命题人一直青睐图形变换问题(旋转,翻折,平移),考题情境无非是在三角形,四边形中展开图形变化,将来可能会在直角坐标系中进行。故欲擒此题,必须做到ABC:(A) 三角形,四边形,特殊点,特殊线,特殊角之性质了如指掌;(B) 翻折问题记住:翻折前后对应边相等对应角相等,对应点的连线被对称轴垂直平分; 旋转问题记住:旋转分顺时针和逆时针; 旋转前后的图形全等。 平移问题记住:平移前后对应边相等对应角相等,一看平移方向,二看平移多少。(C)做题务必先看清题意,画出题目中包含的所有可能情况,再各个击破。(2) 第24题完胜策略 上海中考历年来第24题都属于提高题,它的难度虽不及第25道,但是考查的广度和深度是前面23道题无法与之抗衡的,想拿140分以上的同学们,需要在最后的冲刺阶段全神贯注的练好每套试卷上的24题,此题一般考查直角坐标系情境下数与形的结合,数方面体现在一次函数,二次函数逢考必有;形方面则是相似三角形形影不离,偶尔四边形穿梭其间;数形结合常常则是通过锐角三角比这一“红娘”从中穿针引线!下面我们一起领略一下近几年的第24题,一睹庐山真容。(2010上海)24.如图,已知平面直角坐标系xOy,抛物线y=x2+bx+c过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值考点:二次函数综合题。分析:(1)将A、B的坐标代入抛物线的解析式中,即可求得待定系数的值;将所求得的二次函数解析式化为顶点式,即可得到其对称轴方程及顶点坐标;(2)首先根据抛物线的对称轴方程求出E点的坐标,进而可得到F点的坐标,由此可求出PF的长,即可判断出四边形OAPF的形状,然后根据其面积求出n的值,再代入抛物线的解析式中即可求出m的值解答:解:(1)将A(4,0)、B(1,3)两点坐标代入抛物线的方程得:,解之得:b=4,c=0;所以抛物线的表达式为:y=x2+4x,将抛物线的表达式配方得:y=x2+4x=(x2)2+4,所以对称轴直线为直线x=2,顶点坐标为(2,4);(2)点P(m,n)关于直线x=2的对称点坐标为点E(4m,n),则点E关于y轴对称点为点F坐标为(m4,n),则FP=OA=4,即FP、OA平行且相等,所以四边形OAPF是平行四边形;S=OA|n|=20,即|n|=5;因为点P为第四象限的点,所以n0,所以n=5;代入抛物线方程得m=1(舍去)或m=5,故m=5,n=5点评:此题考查了二次函数解析式的确定、轴对称的性质以及图形面积的求法,难度适中(2011上海)24.已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA二次函数y=x2+bx+c的图象经过点A、M(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标考点:二次函数综合题。分析:(1)先求出根据OA垂直平分线上的解析式,再根据两点的距离公式求出线段AM的长;(2)二次函数y=x2+bx+c的图象经过点A、M待定系数法即可求出二次函数的解析式;(3)可设D(n,n+3),根据菱形的性质得出C(n,n2_ n+3)且点C在二次函数y=x2_ x+3上,得到方程求解即可解答:解:(1)在一次函数y=x+3中,当x=0时,y=3A(0,3)MO=MA,M为OA垂直平分线上的点,可求OA垂直平分线上的解析式为y=,又点M在正比例函数,M(1,),又A(0,3)AM=;(2)二次函数y=x2+bx+c的图象经过点A、M可得,解得,y=x2x+3;(3)点D在一次函数的图象上,则可设D(n,n+3),设B(0,m),(m3),C(n,n2n+3)四边形ABDC是菱形,|AB|=3m,|DC|=yDyC=n+3(n2_n+3)=nn2,|AD|=n,|AB|=|DC|,3m=nn2,|AB|=|DA|,3m=n,解得,n1=0(舍去),n2=2,将n=2,代入C(n,n2_n+3)C(2,2)点评:本题是二次函数的综合题型,其中涉及的知识点有抛物线解析式的确定,两点的距离公式,菱形的性质,解二元一次方程,综合性较强,难度较大(2012上海)24.如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,ADE=90,tanDAE=,EFOD,垂足为F(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当ECA=OAC时,求t的值考点:相似三角形的判定与性质;待定系数法求二次函数解析式;全等三角形的判定与性质;勾股定理。解答:解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(1,0),解得,这个二次函数的解析式为:y=2x2+6x+8;(2)EFD=EDA=90DEF+EDF=90,EDF+ODA=90,DEF=ODAEDFDAO , =,EF=t同理,DF=2,OF=t2(3)抛物线的解析式为:y=2x2+6x+8,C(0,8),OC=8如图,连接EC、AC,过A作EC的垂线交CE于G点ECA=OAC,OAC=GCA(等角的余角相等);在CAG与OCA中,CAGOCA,CG=4,AG=OC=8如图,过E点作EMx轴于点M,则在RtAEM中,EM=OF=t2,AM=OA+AM=OA+EF=4+t,由勾股定理得:AE2=AM2+EM2=;在RtAEG中,由勾股定理得:EG=在RtECF中,EF=t,CF=OCOF=10t,CE=CG+EG=+4由勾股定理得:EF2+CF2=CE2,即,解得t1=10(不合题意,舍去),t2=6,t=6点评:本题是二次函数的综合题型,综合性较强,难度较大欣赏完了以上三道题,诸位作何感想?我想感触最深的莫过于觉得中考拿140分好像并非如呼吸一样自由,倘若几何代数功底不扎实,很难驾驭第24题!但透过这几道题现象本身,我们也有个重大的发现,那就是它们的解题思路并非不俗,而是基本的方法,有些甚至看来比较“木讷”。 如何做到此题一分不丢呢?我觉得同学们做到以下ABC三点即可:(A) 牢记书本上所有出现过的几何图形之性质和判定(如中位线,相似三角形),掌握一次函数二次函数解析式的所有求法,深刻理解交点的意义,熟练应用锐角三角比。(B) 牢记几何图形中常见辅助线的添法。如等腰三角形作底边上的高,梯形作底边上的高以及腰的平行线(在形内或形外),构造相似往往作平行,在直角坐标系中则喜欢过点(如抛物线的顶点)作X轴Y轴的垂线段,最短路径问题则是要做出点关于对称轴的对称点,圆中遇弦作弦心距,遇切点要联半径,两圆位置问题要立即联接圆心等等。 (C)牢记常用的公式。如两点间距离公式,勾股定理,三角形及特殊四边形面积公式,三角形内切圆半径公式(r=2s/c)等。(3) 压轴题尽量多拿分上海中考数学压轴题历年来都是一块“试金石”,惟有“有勇有谋”的将士方能经的起检验。这道题是中考数学最后一道题,也是同学们初中数学生涯里最后一道题,其意义重大影响深远,所以必须使出浑身解数来“善待”它,消极逃避抑或蒙混过关都是对自己的不负责任,“直面惨淡的分数,正视复杂的图形”,用心去聆听题干及图像背后的声音,你会觉得它很美妙,每道压轴题都是一部动人心弦的毕业赞歌,它有精心设计的前奏(第一小问),有如泣如诉徐徐道来的慢板(第二小问),更有狂风暴雨般的高潮涌现(第三小问),一气呵成。下面我们来听几首赞歌,大家用心思量吧!(2010上海)25.如图,在RtABC中,ACB=90半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P(1)当B=30时,连接AP,若AEP与BDP相似,求CE的长;(2)若CE=2,BD=BC,求BPD的正切值;(3)若tanBPD=,设CE=x,ABC的周长为y,求y关于x的函数关系式考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;解直角三角形。专题:几何综合题;压轴题。分析:(1)当B=30时,A=60,此时ADE是等边三角形,则PEC=AED=60,由此可证得P=B=30;若AEP与BDP相似,那么EAP=EPA=B=P=30,此时EP=EA=1,即可在RtPEC中求得CE的长;(2)若BD=BC,可在RtABC中,由勾股定理求得BD、BC的长;过C作CFDP交AB于F,易证得ADEAFC,根据得到的比例线段可求出DF的长;进而可通过证BCFBPD,根据相似三角形的对应边成比例求得BP、BC的比例关系,进而求出BP、CP的长;在RtCEP中,根据求得的CP的长及已知的CE的长即可得到BPD的正切值;(3)过点D作DQAC于Q,可用未知数表示出QE的长,根据BPD(即EDQ)的正切值即可求出DQ的长;在RtADQ中,可用QE表示出AQ的长,由勾股定理即可求得EQ、DQ、AQ的长;易证得ADQABC,根据得到的比例线段可求出BD、BC的表达式,进而可根据三角形周长的计算方法得到y、x的函数关系式解答:解:(1)B=30,ACB=90,BAC=60AD=AE,AED=60=CEP,EPC=30BDP为等腰三角形AEP与BDP相似,EPA=DPB=30,AE=EP=1在RtECP中,EC=EP=;(2)设BD=BC=x在RtABC中,由勾股定理,得:(x+1)2=x2+(2+1)2,解之得x=4,即BC=4过点C作CFDPADE与AFC相似,即AF=AC,即DF=EC=2,BF=DF=2BFC与BDP相似,即:BC=CP=4tanBPD=(3)过D点作DQAC于点Q则DQE与PCE相似,设AQ=a,则QE=1a且,DQ=3(1a)在RtADQ中,据勾股定理得:AD2=AQ2+DQ2即:12=a2+3(1a)2,解之得ADQ与ABC相似,ABC的周长,即:y=3+3x,其中x0点评:此题主要考查了直角三角形的性质、相似三角形的判定和性质以及勾股定理等知识的综合应用能力,难度较大(2011上海)25.在RtABC中,ACB=90,BC=30,AB=50点P是AB边上任意一点,直线PEAB,与边AC或BC相交于E点M在线段AP上,点N在线段BP上,EM=EN,(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若AMEENB(AME的顶点A、M、E分别与ENB的顶点E、N、B对应),求AP的长考点:相似三角形的判定与性质;勾股定理;解直角三角形。专题:几何综合题。分析:(1)本题需先根据已知条件得出AC的值,再根据CPAB求出CP,从而得出CM的值(2)本题需先根据EN,设出EP的值,从而得出EM和PM的值,再得出AEPABC,即可求出=,求出a的值,即可得出y关于x的函数关系式,并且能求出函数的定义域(3)本题需先设EP的值,得出则EM和MP的值,然后分点E在AC上时,根据AEPABC,求出AP的值,从而得出AM和BN的值,再根据AMEENB,求出a的值,得出AP的长;点E在BC上时,根据EBPABCC,求出AP的值,从而得出AM和BN的值,再根据AMEENB,求出a的值,得出AP的长解答:解:(1)ACB=90,AC=,=,=40,CPAB,=,=,CP=24,CM=,=,=26;(2),设EP=12a,则EM=13a,PM=5a,EM=EN,EN=13a,PN=5a,AEPABC,=,x=16a,a=,BP=5016a,y=5021a,=5021,=50x,当E点与A点重合时,x=0当E点与C点重合时,x=32函数的定义域是:(0x32);(3)当点E在AC上时,如图2,设EP=12a,则EM=13a,MP=NP=5a,AEPABC,AP=16a,AM=11a,BN=5016a5a=5021a,AMEENB,=,a=,AP=16=22,当点E在BC上时,如图(备用图),设EP=12a,则EM=13a,MP=NP=5a,EBPABC,=,即=,解得BP=9a,BN=9a5a=4a,AM=509a5a=5014a,AMEENB,即=,解得a=,AP=509a=509=42所以AP的长为:22或42点评:本题主要考查了相似三角形、勾股定理、解直角三角形的判定和性质,在解题时要注意知识的综合应是解本题的关键(2012上海)25.如图,在半径为2的扇形AOB中,AOB=90,点C是弧AB上的一个动点(不与点A、B重合)ODBC,OEAC,垂足分别为D、E(1)当BC=1时,求线段OD的长;(2)在DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,DOE的面积为y,求y关于x的函数关系式,并写出它的定义域考点:垂径定理;勾股定理;三角形中位线定理。解答:解:(1)如图(1),ODBC,BD=BC=,OD=;(2)如图(2),存在,DE是不变的连接AB,则AB=2,D和E是中点,DE=AB=;(3)如图(3),BD=x,OD=,1=2,3=4,2+3=45,过D作DFOEDF=,EF=x,y=DFOE=(0x)通过对近三年压轴题的深入研究与对比,我们很容易发现以下规律:压轴题一般都由3个小题组成。第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕,同时也不是不可战胜的!那么最后的一段时间里,同学们如何备战压轴题呢?我提以下几点:1.决不靠猜题和押题 压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。如果以为这是构造压轴题的唯一方式那就错了。方程与图形的综合的几何问题也是常见的综合方式,如2010中考的第25(3)题,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。2.分析结构理清关系解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。如2010第25题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。又如2007年第25题,(1)、(2)两个小题是“递进关系”,(1)的结论由大题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河北-河北医技工一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-江苏-江苏不动产测绘员四级(中级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西收银员四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西图书资料员五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东铸造工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东汽车修理工(技师/高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东土建施工人员一级(高级技师)历年参考题库含答案解析
- 2020-2025年证券从业之金融市场基础知识自测模拟预测题库(名校卷)
- 2025年职业技能鉴定-铁路职业技能鉴定-铁路职业技能鉴定(铁路车站值班员)高级历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-邮政储汇业务员-邮政储汇业务员高级历年参考题库含答案解析(5套)
- 2025年贵州贵阳市水务环境集团有限公司招聘27人笔试参考题库附带答案详解(10套)
- 2025届中国南方航空“明珠优才管培生”全球招聘30人笔试参考题库附带答案详解(10套)
- 原发性系统性淀粉样变性的护理措施课件
- 《阿房宫赋》课件 统编版高中语文必修下册
- DB54T 0498.3-2025 生态系统碳汇计量与监测体系建设技术规范 第3部分:湿地碳汇计量与监测方法
- 桥小脑角肿瘤护理查房
- 2025小学教师招聘考试试题及答案
- 2025年纪律作风测试题及答案
- 2025江苏苏州昆山国创投资集团有限公司第一期招聘17人笔试参考题库附带答案详解版
- 新疆的历史文化课件
- 安全生产网格化管理工作实施方案
评论
0/150
提交评论