




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.一 集合与函数 1 集合的含义及表示 2 空集的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有个元素的集合,其子集的个数为,真子集的个数为 3集合的基本运算 在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1) , (2) (3) (4)若 则或 4函数及其表示 5 函数的单调性及应用(1) 定义: 设那么: 上是增函数; 上是减函数.(2) 判定方法:定义法(证明题) 图像法 复合法(3) 定义法:证明函数单调性用 利用定义来证明函数单调性的一般性步骤: 设值:任取为该区间内的任意两个值,且 做差,变形,比较大小:做差,并利用通分,因式分解,配方,有理化等方法变形比较大小 下结论(说函数单调性必须在其单调区间上)(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数(5)复合法:针对复合函数采用同增异减原则(6)单调性中结论:在同一个单调区间内:增+增=增: 增减=增:减+减=减:减增=增 若函数在区间为增函数,则,在为减函数(7)单调性的应用:利用函数单调性比较大小 利用函数单调性求函数最值(值域) 重点题型:求二次函数在闭区间上的最值问题6 函数的奇偶性及应用 (1)定义:若定义域关于原点对称若对于任取x的,均有 则为偶函数若对于任取x的,均有则为奇函数 (2)奇偶函数的图像和性质 偶函数 奇函数函数图像关于轴对称函数图像关于原点对称整式函数解析式中只含有的偶次方整式函数解析式中只含有的奇次方在关于原点对称的区间上其单调性相反在关于原点对称的区间上其单调性相同若奇函数在处有定义,则(3)判定方法:定义法 (证明题) 图像法 口诀法 (4)定义法: 证明函数奇偶性步骤: 求出函数的定义域观察其是否关于原点对称(前提性必备条件) 由出发,寻找其与之间的关系 下结论(若则为偶函数,若则为奇函数函数) (4) 口诀法: 奇函数+奇函数=奇函数:偶函数+偶函数=偶函数 奇函数奇函数偶函数: 奇函数偶函数奇函数:偶函数偶函数偶函数 二 指数函数与对数函数 1 指数运算公式 2 对数运算公式 (1)对数恒等式 时 , (2)对数的运算法则 (3)换底公式及推论 推论 3 指数函数与对数函数图像 定义域值域定点单调性 4 指数与对数中的比较大小问题 (1)指数式比较大小 , , (2)对数式比较大小 , , 5 指数与对数图像 幂函数:一般地,函数叫做幂函数,其中为自变量,是常数几种幂函数的图象:函数零点及二分法 一 函数零点的判定(一) 函数有实数根 函数的图像与轴有交点函数有零点(二) 函数的零点的判定定理如果函数在区间上的图像时连续不断的一条曲线,并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根二 函数二分法的应用 (一)函数二分法:对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法。给定精确度,用二分法求函数零点近似值的步骤如下:1确定区间,验证,给定精确度2求区间的中点3计算(1) 若,则就是函数的零点(2) 若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《选调初高中教师教育科研能力提升合作协议》
- 美团点评团购服务合同违约责任及损害赔偿标准
- 项目合同知识产权授权与品牌合作推广协议
- 2025医疗机构医用耗材采购销售合同模板
- 2025【合同范本】标准版家政服务员劳动合同范本
- 软件数据安全保密及第三方服务提供者责任合同
- 初高中教师选调与教育教学改革实施及评价合同
- 研发机构博士后聘用合同与科研成果总结范本
- 新能源产业环保技术创新2025:责任与挑战应对策略报告
- 2025年学历类自考公共课高等数学(工本)-数量方法(二)参考题库含答案解析(5卷)
- 终止妊娠药品规范化管理
- 2025儋州市辅警考试试卷真题
- 代发工资协议书范本5篇
- 期权开户考试题及答案
- 委托代购房屋合同协议
- 温州润益化工有限公司年产6000吨聚甲基丙烯酸甲酯,6000吨甲基丙烯酸甲酯技改项目环境影响报告书
- 2025电商运营培训
- 考研英语一阅读理解真题大全
- 销售经理竞聘述职报告
- 酸雾净化塔安拆施工方案
- 电力行业实施降本增效的方案
评论
0/150
提交评论