系统的传递函数阵和状态空间表达式的转换及能控性,能观性分析.docx_第1页
系统的传递函数阵和状态空间表达式的转换及能控性,能观性分析.docx_第2页
系统的传递函数阵和状态空间表达式的转换及能控性,能观性分析.docx_第3页
系统的传递函数阵和状态空间表达式的转换及能控性,能观性分析.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实验六 系统的传递函数阵和状态空间表达式的转换及能控性,能观性分析一、实验目的1、学习多变量系统状态空间表达式的建立方法、了解统状态空间表达式与传递函数相互转换的方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。3、学习多变量系统状态能控性及稳定性分析的定义及判别方法;4、学习多变量系统状态能观性及稳定性分析的定义及判别方法;5、通过用MATLAB编程、上机调试,掌握多变量系统能控性及稳定性判别方法。二、实验原理设系统的模型如式(11)示。 (11)其中A为nn维系数矩阵、B为nm维输入矩阵 C为pn维输出矩阵,D为传递阵,一般情况下为0,只有n和m维数相同时,D=1。系统的传递函数阵和状态空间表达式之间的关系如式(12)示。 (12)式(1.2)中,表示传递函数阵的分子阵,其维数是pm;表示传递函数阵的按s降幂排列的分母。1 设系统的状态空间表达式 (21)系统的能控分析是多变量系统设计的基础,包括能控性的定义和能控性的判别。系统状态能控性的定义的核心是:对于线性连续定常系统(21),若存在一个分段连续的输入函数U(t),在有限的时间(t1-t0)内,能把任一给定的初态x(t0)转移至预期的终端x(t1),则称此状态是能控的。若系统所有的状态都是能控的,则称该系统是状态完全能控的。2 系统输出能控性是指输入函数U(t)加入到系统,在有限的时间(t1-t0)内,能把任一给定的初态x(t0)转移至预期的终态输出y(t1)。能控性判别分为状态能控性判别和输出能控性判别。状态能控性分为一般判别和直接判别法,后者是针对系统的系数阵A是对角标准形或约当标准形的系统,状态能控性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态能控性分为一般判别是应用最广泛的一种判别法。输出能控性判别式为: (22)状态能控性判别式为: (23)系统的能观分析是多变量系统设计的基础,包括能观性的定义和能观性的判别。系统状态能观性的定义:对于线性连续定常系统(21),如果对t0时刻存在ta,t0ta,根据t0,ta上的y(t)的测量值,能够唯一地确定S系统在t0时刻的任意初始状态x0,则称系统S在t0时刻是状态完全能观测的,或简称系统在t0,ta区间上能观测。状态能观性分为一般判别和直接判别法,后者是针对系统的系数阵A是对角标准形或约当标准形的系统,状态能观性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态能观性分为一般判别是应用最广泛的一种判别法。状态能控性判别式为: (24)3 只要系统的A的特征根实部为负,系统就是状态稳定的。式(12)又可写成: (2.5)当状态方程是系统的最小实现时,系统的状态渐近稳定与系统的BIBO(有界输入有界输出)稳定等价;当时,若系统状态渐近稳定则系统一定是的BIBO稳定的。三、实验内容实验1实验2,四、实验总结1、 学习和了解系统状态方程的建立与传递函数相互转换的方法;掌握系统的能观性,能控

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论