高一函数定义域值域讲义.doc_第1页
高一函数定义域值域讲义.doc_第2页
高一函数定义域值域讲义.doc_第3页
高一函数定义域值域讲义.doc_第4页
高一函数定义域值域讲义.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

题型1:求有解析式的函数的定义域例2.(08年湖北)函数的定义域为( )A.;B.;C. ;D. 解题思路函数的定义域应是使得函数表达式的各个部分都有意义的自变量的取值范围。解析欲使函数有意义,必须并且只需,故应选择题型2:求抽象函数的定义域例3(2006湖北)设,则的定义域为( )A. ;B. ;C. ;D. 解题思路要求复合函数的定义域,应先求的定义域。解析由得,的定义域为,故解得。故的定义域为.选B.12011茂名模拟 已知函数f(x)lg(x3)的定义域为M,g(x)的定义域为N,则MN等于()Ax|x3 Bx|3x2Cx|x2 Dx|30)例3若函数的定义域为R,求实数a的取值范围.2若函数f(x)的定义域是1,1,则函数的定义域是( )ABCD3函数的定义域是_, _.4函数y=log2x1(324x)的定义域是_.5若函数y=f(x)的定义域是0,2,则函数y=f(x+1)+f(x1)的定义域为_.1函数的定义域为_.2函数的定义域为_,的定义域为_.3已知函数f(x)的定义域为a,b,其中0ab,则F(x)=f(x)f(x)的定义域为_,4已知f(x)的定义域为0,1,则的定义域为_.6若函数的定义域为R,则实数a的取值范围为_.2(文)(2011广州市综合测试)函数y的定义域为集合A,函数yln(2x1)的定义域为集合B,则AB等于()A(, B(,)C(,) D,)答案A8(2011广东揭阳一模)函数f(x)lg(x1)的定义域是()A(0,2) B(1,2)C(2,) D(,1)答案B7若函数yf(x)的定义域是0,2,则函数g(x)的定义域是()A0,1 B0,1)C0,1)(1,4 D(0,1)问题1:已知函数的定义域为,求的定义域误解因为函数的定义域为,所以,从而故的定义域是正解因为的定义域为,所以在函数中,从而,故的定义域是即本题的实质是求中的范围问题2:已知的定义域是,求函数的定义域误解因为函数的定义域是,所以得到,从而,所以函数的定义域是正解因为函数的定义域是,则,从而所以函数的定义域是即本题的实质是由求的范围即与中含义不同题型3;求函数的值域例4已知函数,若恒成立,求的值域解题思路应先由已知条件确定取值范围,然后再将中的绝对值化去之后求值域解析依题意,恒成立,则,解得,所以,从而,所以的值域是(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数,可变为解决(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数就是利用函数和的值域来求。(3)判别式法:通过对二次方程的实根的判别求值域。如求函数的值域由得,若,则得,所以是函数值域中的一个值;若,则由得,故所求值域是(4)分离常数法:常用来求“分式型”函数的值域。如求函数的值域,因为,而,所以,故(5)利用基本不等式求值域:如求函数的值域当时,;当时,若,则若,则,从而得所求值域是(6)利用函数的单调性求求值域:如求函数的值域因,故函数在上递减、在上递增、在上递减、在上递增,从而可得所求值域为(7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法)。5.写出下列函数值域:(1) ,;值域是(2) ; 值域是(3) , 值域是9求函数f(x)的定义域例2.求下列函数的定义域: ; ;解:(1) 由题意得:解得且或且,故定义域为 由题意得:,解得,故定义域为例3.求下列函数的值域:(1),;(2);2值域是(0,+)的函数是( )ABCD3函数的值域是_,函数的值域是_.的值域是_.函数 的值域是_.(3)4函数的值域是_,的值域是_.2函数的值域是_,的值域是_.例2求函数的值域.(4)7函数f(x)的值域是_7.函数的定义域为( )A. B. C. D.9.函数的定义域是 ( ) A B C D17.(1)已f ()=,求f(x)的解析式. w.w.w.k.s.5.u.c.o.m (2)已知y=f(x)是一次函数,且有f f(x)=9x8,求此一次函数的解析式.5函数的定义域为_1函数f(x)的定义域是_2函数的定义域为_3. 函数的值域为_1函数y的定义域为()A(,1) B(,)C(1,) D(,1)(1,)2设函数f(x)则f的值为()A. B C. D18新题导练 3.(2008安徽文、理)函数的定义域为 解析 ;由解得4定义在上的函数的值域为,则函数的值域为( )A;B;C;D无法确定 解析 B;函数的图象可以视为函数的图象向右平移一个单位而得到,所以,它们的值域是一样的5(2008江西改) 若函数的定义域是,则函数的定义域是 解析 ;因为的定义域为,所以对,但故6(2008江西理改)若函数的值域是,则函数的值域是 解析 ;可以视为以为变量的函数,令,则,所以,在上是减函数,在上是增函数,故的最大值是,最小值是21.设函数,则_;_2.设函数,,则_3_;第5题3.已知函数是一次函数,且,,则_15_ (0x2)4.设f(x),则ff()_2已知,且,则m等于_82012潍坊模拟 已知函数f(x)若f(a)f(1)0,则实数a的值等于()A3 B1 C1 D3例1.已知二次函数的最小值等于4,且,求的解析式分析:给出函数特征,可用待定系数法求解解法一:设,则解得故所求的解析式为解法二:,抛物线有对称轴故可设将点代入解得故所求的解析式为解法三:设,由,知有两个根0,2,可设,将点代入解得故所求的解析式为问题1已知二次函数满足,求方法一:换元法令,则,从而所以方法二:配凑法因为所以方法三:待定系数法因为是二次函数,故可设,从而由可求出,所以(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出问题2:已知函数满足,求因为以代得由联立消去得题型1:由复合函数的解析式求原来函数的解析式例3 (04湖北改编)已知=,则的解析式可取为 解题思路这是复合函数的解析式求原来函数的解析式,应该首选换元法解析 令,则, .故应填【名师指引】求函数解析式的常用方法有: 换元法( 注意新元的取值范围); 待定系数法(已知函数类型如:一次、二次函数、反比例函数等);整体代换(配凑法);构造方程组(如自变量互为倒数、已知为奇函数且为偶函数等)。题型2:求二次函数的解析式 例4 (普宁市城东中学09届高三第二次月考)二次函数满足,且。求的解析式;在区间上,的图象恒在的图象上方,试确定实数的范围。解题思路(1)由于已知是二次函数,故可应用待定系数法求解;(2)用数表示形,可得求对于恒成立,从而通过分离参数,求函数的最值即可。解析设,则与已知条件比较得:解之得,又,由题意得:即对恒成立,易得考点4:分段函数9(09年潮州金山中学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论