全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三元一次方程组(基础)要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个相同的未知数,并且含有未知数的项的次数都是1的整式方程如x+y-z1,2a-3b+4c5等都是三元一次方程要点诠释:(1) 三元一次方程的条件:是整式方程,含有三个未知数,含未知数的项的最高次数是1次(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零2三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可(2) 在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“”合写在一起要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程其思想方法是: (2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2找出能够表达应用题全部含义的相等关系;3根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4解这个方程组,求出未知数的值;5写出答案(包括单位名称)要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一(3)一般来说,设几个未知数,就应列出几个方程并组成方程组1. 下列方程组中是三元一次方程组的是( )A B C D【答案】D【解析】A选项中与中未知数项的次数为2次,故A选项不是;B选项中,不是整式,故B选项不是;C选项中有四个未知数,故C选项不是;D项符合三元一次方程组的定义【总结升华】理解三元一次方程组的定义要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)一般地,如果三个一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组2. (韶关)解方程组 【思路点拨】方程是用未知数x表示y的式子,将代入可得二元一次方程组【答案与解析】解:将代入得:5x+3(2x-7)+2z2,整理得:11x+2z23 由此可联立方程组,+2得:25x50,x2把x2分别代入可知:y-3,所以方程组的解为【总结升华】解三元一次方程组的思想仍是消元,是用加减消元法,还是用代入消元法,要根据方程组的特征来确定,一定要选择较简便的方法3. 解方程组【答案与解析】解法一:原方程可化为:由得:,将代入得:,得:将代入中两式,得:,所以方程组的解为:解法二:设,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿氢制取项目施工方案
- 企业人力资源管理优化方案及年度工作安排
- 工业加热设备能耗对比报告
- 供应链管理计划与优化方案
- 铁道客车乘务管理的优化建议
- 2025年KJ-4煤矿安全检测综合管理系统合作协议书
- 溴系列深加工项目施工方案
- 半导体特种材料生产项目施工方案
- 精细化工新材料项目商业计划书(范文)
- 石油化工:MES平台在生产管理中的实际运用
- 2025辽宁省咨询产业集团招聘考试参考题库及答案解析
- 村干部考入事业编面试真题(含答案)
- 铝锭贸易专业知识培训课件
- 安全生产相关工作主要业绩及研究成果
- 机房运维题考试题及答案
- 会诊制度存在问题及整改措施
- 黄河防汛业务知识培训课件
- 大学生职业规划大赛《生物科学专业》生涯发展展示
- 2025年公务员公开遴选笔试试题及答案(综合类)
- 湖南省邵阳市2023-2024学年九年级上学期化学期中考试试卷(含答案)
- 谷歌2023年度环境、社会与公司治理报告:为NGO与学术机构提供可持续发展数据
评论
0/150
提交评论