




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十四讲与圆有关的计算宜宾中考考情与预测近五年中考考情2019年中考预测年份考查点题型题号分值预计2019年宜宾中考考查内容是正多边形与圆的综合运用,分值约为3分.2018正多边形与圆填空题133分2017正多边形与圆填空题153分 2016扇形面积的计算选择题43分2015圆面积的计算选择题73分2014未单独考查宜宾考题感知与试做1.(2016宜宾中考)半径为6,圆心角为120的扇形的面积是(D)A3 B6 C9 D122(2015宜宾中考)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为(B)A231 B210 C190 D171宜宾中考考点梳理弧长的计算1由圆的周长公式C2r,可以推得弧长的计算公式为l_(r为圆的半径,n为弧所对的圆心角的度数)【温馨提示】在弧长的计算公式中,有l、n、r三个量,已知其中的两个量,可以求出第三个量扇形面积的计算2由圆的面积公式Sr2,可以推得扇形面积的计算公式为S_或S_lr_(r为圆的半径,n是扇形的圆心角的度数,l为扇形的弧长)【温馨提示】在扇形面积的计算公式中,对于S、 l、n、r四个量,可以“知二求二”圆柱与圆锥侧面积和全面积的计算3圆柱侧面积和全面积的计算(1)侧面积:圆柱的侧面展开图是一个矩形,这个矩形的一边长为圆柱的底面周长C,另一边长为圆柱的高h,若圆柱的底面半径为r,则S圆柱侧_Ch_2rh.(2)全面积:S圆柱全S圆柱侧2S圆柱底_2rh_2r2_4圆锥侧面积和全面积的计算(1)侧面积:圆锥的侧面展开图是一个扇形,这个扇形的弧长等于圆锥底面周长C,半径等于圆锥的母线长l,若圆锥的底面半径为r,这个扇形的圆心角为,则360,S圆锥侧Clrl_.(2)全面积:S圆锥全S圆锥侧S圆锥底_r2_1(2018滨州中考)已知半径为5的O是ABC的外接圆,若ABC25,则劣弧的长为(C)A. B. C. D.2(2018资阳中考)如图,ABCDEF为O的内接正六边形,ABa,则图中阴影部分的面积是(B) A.a2 B.a2 C.a2 D.a23(2018遵义中考)若要用一个底面直径为 10,高为 12 的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为(B)A60 B65 C78 D1204. “赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图已知底面圆的直径AB8 cm,圆柱体部分的高BC6 cm,圆锥体部分的高CD3 cm,则这个陀螺的表面积是(C)A68 cm2 B74 cm2C84 cm2 D100 cm2(第4题图)(第5题图)5(2018贵港中考)如图,在RtABC中,ACB90,AB4,BC2,将ABC绕点B顺时针方向旋转到ABC的位置,此时点A恰好在CB的延长线上,则图中阴影部分的面积为_4_(结果保留)6(2018永州中考)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_.7(2018眉山中考)如图,ABC是等腰直角三角形,ACB90,ACBC2,把ABC绕点A按顺时针方向旋转45后得到ABC,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是 _8(2018贵港中考)如图,直线l为yx,过点A1(1,0)作A1B1x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3按此作法进行下去,则点An的坐标为(_2n1,0_)9(2018岳阳中考)如图,以AB为直径的O与CE相切于点C,CE交AB的延长线于点E,直径AB18,A30,弦CDAB,垂足为点F,连结AC、OC,则下列结论正确的是_(写出所有正确结论的序号) ;扇形OBC的面积为;OCFOEC;若点P为线段OA上一动点,则APOP有最大值20.25.中考典题精讲精练正多边形中有关的计算命题规律:考查正多边形中的有关计算,题目以填空题、选择题的形式出现【典例1】(2018威海中考)如图,在正方形ABCD中,AB12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连结AF、EF,图中阴影部分的面积是(C)A1836 B2418C1818 D1218【解析】作FHBC于点H,连结AE,如图,根据正方形的性质和切线的性质得BECECHFH6,则利用勾股定理可计算出AE6.通过RtABERtEHF得AEF90,然后利用图中阴影部分的面积S正方形ABCDS半圆SABESAEF进行计算弧长、扇形面积的计算命题规律:考查弧长、扇形面积的计算公式,题目以填空题、选择题的形式出现【典例2】(2018十堰中考)如图,扇形OAB中,AOB100,OA12,C是OB的中点,CDOB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是(C)A1218 B1236C618 D636【解析】连结OD、BD.根据点C为OB的中点可得CDO30,继而可得BDO为等边三角形,求出扇形BOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白BDC(S扇形BODSCOD)即可求出阴影部分的面积圆柱、圆锥侧面积、全面积的计算命题规律:考查圆柱、圆锥侧面积、全面积的计算,题目以填空题、选择题的形式出现【典例3】(2018绵阳中考)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25 m2,圆柱高为3 m,圆锥高为2 m的蒙古包,则需要毛毡的面积是(A)A(305) m2B40 m2C(305) m2D55 m2【解析】利用圆的面积得到底面圆的半径,再利用勾股定理计算出母线长,接着根据圆锥的侧面展开图为扇形和圆柱的侧面展开图为矩形计算它们的侧面积,最后求它们的和即可有关圆计算的综合问题命题规律:将计算圆的弧长、扇形的面积与三角形、四边形等知识综合起来,考查综合解决问题的能力【典例4】(2018湖州中考)如图,已知AB是O的直径,C、D是O上的点,OCBD,交AD于点E,连结BC.(1)求证:AEED;(2)若AB10,CBD36,求的长【解析】(1)根据圆周角定理的推论可得ADB90,依据平行线的性质得出AEO90,再利用垂径定理证明即可;(2)利用垂径定理可得,所以ABCCBD36,AOC2ABC72,根据弧长的计算公式即可求得的长【解答】(1)证明:AB是O的直径,ADB90.OCBD,AEOADB90,即OCAD.AEED;(2)解:OCAD,.ABCCBD36.AOC2ABC23672.的长为2.(2)沿母线SA将圆锥的侧面展开,如图则线段AM的长就是蚂蚁所走的最短距离由(1)知,SA40 cm,的长为20 cm.20,n90.SASA40 cm,SM3AM,SM30 cm.在RtASM中,由勾股定理,得AM50 cm.它所走的最短距离是50 cm.1. (2018广安中考)如图,已知O的半径是2,点A、B、C在O上,若四边形OABC为菱形,则图中阴影部分面积为(C)A.2 B.C.2 D.2. (2018成都中考)如图,在ABCD中,B60,C的半径为3,则图中阴影部分的面积是(C) A B2 C3 D63. (2018临沂中考)如图,ABC为等腰三角形,O是底边BC的中点,腰AB与O相切于点D,OB与O相交于点E. (1)求证:AC是O的切线;(2)若BD,BE1.求阴影部分的面积(1)证明:连结OD、AO,作OFAC于点F,如图ABC为等腰三角形,O是底边BC的中点,AOBC,AO平分BAC.AB与O相切于点D,ODAB.而OFAC,OFOD,AC是O的切线;(2)解:在RtBOD中,设O的半径为r.则ODOEr,r2()2(r1)2.解得r1.OD1,OB2,B30,BOD60,AOD30.在RtAOD中,ADOD,阴影部分的面积2SAODS扇形DOF21.4(2018东营中考)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为_20_5. 如图,圆锥底面的半径为10 cm,高为10cm.(1)求圆锥的全面积;(2)若一只蚂蚁从底面上一点A出发绕圆锥一周回到SA上一点M处,且SM3AM,求它所走的最短距离解:(1)由题意可得圆锥的母线SA40 cm.圆锥的侧面展开图扇形的弧长l2OA20 cm,S侧lSA400 cm2,S底AO2100 cm2,S全S侧S底500 cm2;6(2018达州中考)已知:如图,以等边ABC的边BC为直径作O,分别交AB、AC于点D、E,过点D作DFAC交AC于点F.(1)求证:DF是O的切线;(2)若等边ABC的边长为8,求由、DF、EF围成的阴影部分的面积(1)证明:如图,连结CD、OD.BC是O的直径,CDB90,即CDAB.又ABC是等边三角形,ADBD.BO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蓟县恒温配送合同协议
- 美容床设备转让合同协议
- 美容员工入股合同协议
- 笔筒定制采购合同协议
- 游艇设备租赁合同协议
- 招商代理服务合同
- 农耕区域水土保持和灌溉设施合同
- 2025年货运从业资格证考试模拟题库及答案
- 《营销视觉设计》课件
- 《初中主题班会课件:热爱生活茁壮成长》
- 华为管理面试题及答案
- 2024-2025学年统编版小学道德与法治三年级下册期中考试测试卷附答案
- 智能垃圾桶设计方案资料
- 2025陕西汉中汉源电力(集团)限公司招聘56人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年北京市西城区中考一模道德与法治试卷(含答案)
- 新闻报道的写作及范例课件
- 2025-2030中国CAD-CAM牙科系统行业市场发展趋势与前景展望战略研究报告
- 【9数一模】2025年安徽省合肥市第四十五中学九年级中考数学一模试卷
- 年产30万吨生物航煤项目可行性研究报告(仅供参考)
- 南京师范大学自主招生个人陈述范文与撰写要点
- 浙江省A9协作体2024-2025学年高二下学期4月期中联考语文试卷(含答案 )
评论
0/150
提交评论