




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学设计与反思课题: 圆心角教案科目: 数学教学对象: 9年级课时: 3.4第二课时提供者:汪志忠单位:淳安县汾口镇初级中学 一、教学内容分析本节课的教学内容是3.4圆心角,圆心角、圆心角所对的弧、圆心角所对的弦等概念,弧、弦、圆心角之间的关系定理是同圆中证明弧相等、角相等、线段相等的主要依据,这个关系也是本节的重点内容。根据学生的接受能力及教学内容,我把本部分内容作为一课时,重要介绍圆心角,圆心角所对的弧,所对的弦等概念。如何利用圆的旋转不变性探究弧、弦、圆心角之间的关系定理;如何利用这些关系解决有关的证明,计算问题。二、教学目标1、经历探索圆心角定理的逆定理的过程;2、掌握”在同圆或等圆中,如果两个圆心角、两条弧、两条弦,两个圆心距中有一对量相等,那么它们所对应的其余各对量都相等”这个圆的性质;3、会运用关于圆心角,弧,弦,弦心距之间相互关系的定理解决简单的几何问题.三、学习者特征分析根据初三学生现有的知识水平及学生的年龄特征和心理特征,通过指导学生通过旋转操作后观察、探究、讨论、自己得出结论。教师再加以点拨总结。这样学生的印象比较深,掌握的也比较牢固。接着设计相应的例题与练习使学生利用已探究的知识解决证明或计算题,使学生真正具备解决问题的能力,促进学生共同进步。教学过程中及时给学生鼓励,肯定学生探究的结论的不简单之处,让学生感到教师比较欣赏他,从而提高学习的兴趣和增强学习的信心。四、教学策略选择与设计通过教学,引导学生自己动手实践,借助圆的旋转不变性,让学生自己探究并发现弧、弦、圆心角之间的相等关系,培养学生的逻辑思维能力和创新能力;利用弧、弦、圆心角之间的关系尝试解决证明或计算问题,培养学生利用所学知识解决实际问题的能力,使学生增强勇于挑战的决心,形成在探究中坚强的毅力。五、教学重点及难点重点:弧、弦、圆心角之间的关系难点:利用弧、弦、圆心角之间的关系解决有关的证明、计算等问题。六、教学过程教师活动学生活动设计意图1、 复习旧知,创设情景:1、圆具有什么性质?2、如图,已知:O上有两点A、B,连结OA、OB,作AOB的角平分线交O于点C,连结AC、BC.图中有哪些量是相等的?CBAO复习圆心角定理的内容.3、请写出圆心角定理的逆命题,并证明它们的正确性.(1).逆命题 : 在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等,所对的弦的弦心距相等。(2) 逆命题 : 在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等,弦的弦心距相等。(3)逆命题 : 在同圆或等圆中,相等的弦心距对应弦相等,弦所对的圆心角相等,所对的弧相等。BEDAFCO 一、回答、讨论、书写:1. 圆具有什么性质?2. 图中有哪些量是相等的?复习圆心角定理的内容.3. 请写出圆心角定理的逆命题,并证明它们的正确性.1、以提问的形式激发学生探究新知识的兴趣,这样自然 而然就过渡到新知识。2、使学生明确圆心角,圆心角所对的弧,圆心角所对弦的概念,为后面探究弧、弦、圆心角之间的关系做好铺垫。2、 合作交流,进行探究1、运用上面的结论来解决下面的问题:已知:如图,AB、CD是O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空: (1)如果AB=CD,那么 _,_,_。 (2)如果OE=OF,那么 _,_,_。 (3)如果弧AB=弧CD 那么 _,_,_。 (4)如果AOB=COD,那么 _,_,_。2.上面的练习说明:以下的四个量中只要有一个量相等,就可以得到其余的量相等:AOB=CODAB=CDOE=OF弧AB=弧CD3一般地,圆有下面的性质 在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一组量相等,那么它们所对应的其余的各组量都相等。AOB=CODAB=CDOE=OFAB=CD4.例题讲解:例2:如图,等边三角形ABC内接于O,连结OA,OB,OC AOB 、COB、 AOC分别为多少度?延长AO,分别交BC于点P,弧BC于点D,连结BD,CD.判断三角形是哪一种特殊三角形?判断四边形BDCO是哪一种特殊四边形,并说明理由。若O的半径为r,求等边ABC三角形的边长?若等边三角形ABC的边长r,求O的半径为 多少?当r = 时求圆的半径? 例3:如图,顺次连结O的两条直径A和BD的端点,所得的四边形是什么特殊四边形?如果要把直径为30cm的圆柱形原木锯成一根横截面为正方形的木材,并使截面尽可能地大,应怎样锯?最大横截面面积是多少?如果这根原木长15m,问锯出地木材地体积为多少立方米(树皮等损耗略去不计)?2、 思考、讨论、解答:1、根据本节定理及推论填空: (1)如果AB=CD,那么 _,_,_。 (2)如果OE=OF,那么 _,_,_。 (3)如果弧AB=弧CD 那么 _,_,_。 (4)如果AOB=COD,那么 上面的练习说明:以下的四个量中只要有一个量相等,就可以得到其余的量相等:AOB=CODAB=CDOE=OF弧AB=弧CD_,_,_。2.上面的练习说明什么?3.一般地,圆有怎样的性质? 4. 理解例题:例2: 例3:1、让学生通过动手操作,自己发现知识,归纳知识,这样培养了学生的思维能力,用符号语言表示,能教给学生解决问题的具体做法,这样能够掌握怎样由关系定理解决问题。2、使学生加深印象,明白这个定理在同圆或等圆中才能用的,为解决实际问题打好基础 。3、让学生在理解的基础上利用关系定理解决问题,从而真正的掌握关系定理,把知识转化成能力,教师通过巡视掌握学生反馈信息。4、教学中应抓好以下几个环节(1)怎样才能使截面尽可能大?应当使截面的各个顶点在圆上,这里用的是合情推理.(2)怎样能使截面成为一个内接于圆o的正方形?应到学回顾第一问的解答,并问在什么条件矩形就成为正方形.三.巩固新知:课内练习1,2三课内练习1,2课内练习巩固新知4. 小结与布置作业: 小结:通过这节课的学习,你学到了什么知识?1.圆的性质在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一组量相等,那么它们所对应的其余的各组量都相等。2.运用关于圆心角,弧,弦,弦心距之间相互关系的定理解决简单的几何问题布置作业:见作业本小结:通过这节课的学习,你学到了什么知识?作业:见作业本通过小结,使学生进一步深化对关系定理的理解,使知识系统化,条理化,通过学习方法指导让学生掌握学习知识的方法,自主学习,促进学生积极主动发展,逐步达到“会学数学”的目的。七、教学评价设计在教学过程中,对学生动手、探究、解答、作业等进行及时评价,尽量多鼓励,肯定学生的成绩,对学生加强学习方法的辅导。课堂通过学生的表情、动作、眼神、等反馈进行调控,使学生在教师的指导下,通过动手操作、观察、讨论思考、探究等,掌握本节课的内容。在教学过程中,采用 “情境问题探究反思提高”的教学模式,使学生能够主动参与教学过程,自主获取知识,重要的是学会获取知识的方法。八、板书设计圆心角定理的逆命题(1).逆命题 : 在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等,所对的弦的弦心距相等。(2) 逆命题 : 在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等,弦的弦心距相等。(3)逆命题 : 在同圆或等圆中,相等的弦心距对应弦相等,弦所对的圆心角相等,所对的弧相等。BEDAFCO AOB=CODAB=CDOE=OFAB=CDAOB=COD九教学反思 1这节课的教学或学习流程:复习旧知,创设情景-合作交流,进行探究-巩固新知-小结与布置作业。2精彩的瞬间:“合作交流,进行探究”这一块;这节课中最满意的地方或者让您最兴奋的地方:也是“合作交流,进行探究”这一块;3 学生对这节课的学习达到了我期望的水平,我很满意。但这节课还有熟练掌握弧、弦、圆心角之间的关系问题需要强化,因为这块内容较难。4在教学过程中,通过对学生的表情、动作、眼神、等反馈
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年养老评估师初级考试备考习题集
- 2025年安全生产安全培训手册培训题及答案
- 2025年初级金融从业资格认证模拟题集
- 員工岗前培训协议
- 2025年社区养老服务评估师面试模拟题解析
- 2025年安全生产安全培训测试模拟题及答案
- 2025年旅游管理行业从业资格考试试卷及答案解析
- 2025年机器人维护团队协作模式面试题
- 2025年水电维修工面试常见题
- 2025年环境监测与评价师资格考试试题及答案解析
- 保密教育培训课件内容
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 2024-2025学年人教版数学五年级下学期期末试卷(含答案)
- 检修案例-MR有载调压开关的吊芯检查全解课件
- 2023年国药控股股份有限公司招聘笔试题库及答案解析
- 现场处置方案现场应急处置方案(全套)
- 中国移动多功能厅多媒体系统方案
- 河道清淤施工方案(定稿)
- 石料场开采方案
- 2019三福百货品牌介绍51P
- 第1章制图基础-金大鹰
评论
0/150
提交评论