贾俊平统计学第8章 一元线性回归.ppt_第1页
贾俊平统计学第8章 一元线性回归.ppt_第2页
贾俊平统计学第8章 一元线性回归.ppt_第3页
贾俊平统计学第8章 一元线性回归.ppt_第4页
贾俊平统计学第8章 一元线性回归.ppt_第5页
已阅读5页,还剩73页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

作者贾俊平 统计学 第三版 2008 2008年8月 不要过于教条地对待研究的结果 尤其当数据的质量受到怀疑时 DamodarN Gujarati 统计名言 第8章一元线性回归 8 1变量间关系的度量8 2一元线性回归的估计和检验8 3利用回归方程进行预测8 4用残差检验模型的假定 2008年8月 学习目标 相关关系的分析参数的最小二乘估计回归直线的拟合优度回归方程的显著性检验利用回归方程进行预测用残差证实模型的假定用Excel和SPSS进行回归 2008年8月 子代与父代一样吗 Galton被誉为现代回归和相关技术的创始人 1875年 Galton利用豌豆实验来确定尺寸的遗传规律 他挑选了7组不同尺寸的豌豆 并说服他在英国不同地区的朋友每一组种植10粒种子 最后把原始的豌豆种子 父代 与新长的豌豆种子 子代 进行尺寸比较当结果被绘制出来之后 他发现并非每一个子代都与父代一样 不同的是 尺寸小的豌豆会得到更大的子代 而尺寸大的豌豆却得到较小的子代 Galton把这一现象叫做 返祖 趋向于祖先的某种平均类型 后来又称之为 向平均回归 一个总体中在某一时期具有某一极端特征 低于或高于总体均值 的个体在未来的某一时期将减弱它的极端性 或者是单个个体或者是整个子代 这一趋势现在被称作 回归效应 人们发现它的应用很广 而不仅限于从一代到下一代豌豆大小问题 2008年8月 子代与父代一样吗 正如Galton进一步发现的那样 平均来说 非常矮小的父辈倾向于有偏高的子代 而非常高大的父辈则倾向于有偏矮的子代 在第一次考试中成绩最差的那些学生在第二次考试中倾向于有更好的成绩 比较接近所有学生的平均成绩 而第一次考试中成绩最好的那些学生在第二次考试中则倾向于有较差的成绩 同样比较接近所有学生的平均成绩 同样 平均来说 第一年利润最低的公司第二年不会最差 而第一年利润最高的公司第二年则不会是最好的如果把父代和子代看作两个变量 找出这两个变量的关系 并根据这种关系建立适当的数学模型 就可以根据父代的数值预测子代的取值 这就是经典的回归方法要解决的问题 学完本章的内容你会对回归问题有更深入的理解 2008年8月 回归分析研究什么 研究某些实际问题时往往涉及到多个变量 在这些变量中 有一个变量是研究中特别关注的 称为因变量 而其他变量则看成是影响这一变量的因素 称为自变量假定因变量与自变量之间有某种关系 并把这种关系用适当的数学模型表达出来 那么 就可以利用这一模型根据给定的自变量来预测因变量 这就是回归要解决的问题在回归分析中 只涉及一个自变量时称为一元回归 涉及多个自变量时则称为多元回归 如果因变量与自变量之间是线性关系 则称为线性回归 linearregression 如果因变量与自变量之间是非线性关系则称为非线性回归 nonlinearregression 8 1变量间的关系8 1 1变量间是什么样的关系 8 1 2用散点图描述相关关系8 1 3用相关系数度量关系强度 第8章一元线性回归 2008年8月 怎样分析变量间的关系 建立回归模型时 首先需要弄清楚变量之间的关系 分析变量之间的关系需要解决下面的问题变量之间是否存在关系 如果存在 它们之间是什么样的关系 变量之间的关系强度如何 样本所反映的变量之间的关系能否代表总体变量之间的关系 8 1 1变量间是什么样的关系 8 1变量间的关系 2008年8月 函数关系 是一一对应的确定关系设有两个变量x和y 变量y随变量x一起变化 并完全依赖于x 当变量x取某个数值时 y依确定的关系取相应的值 则称y是x的函数 记为y f x 其中x称为自变量 y称为因变量各观测点落在一条线上 2008年8月 相关关系 几个例子 子女的身高与其父母身高的关系从遗传学角度看 父母身高较高时 其子女的身高一般也比较高 但实际情况并不完全是这样 因为子女的身高并不完全是由父母身高一个因素所决定的 还有其他许多因素的影响一个人的收入水平同他受教育程度的关系收入水平相同的人 他们受教育的程度也不可能不同 而受教育程度相同的人 他们的收入水平也往往不同 因为收入水平虽然与受教育程度有关系 但它并不是决定收入的惟一因素 还有职业 工作年限等诸多因素的影响农作物的单位面积产量与降雨量之间的关系在一定条件下 降雨量越多 单位面积产量就越高 但产量并不是由降雨量一个因素决定的 还有施肥量 温度 管理水平等其他许多因素的影响 2008年8月 相关关系 correlation 一个变量的取值不能由另一个变量唯一确定当变量x取某个值时 变量y的取值对应着一个分布各观测点分布在直线周围 8 1 2用散点图描述相关关系 8 1变量间的关系 2008年8月 散点图 scatterdiagram 2008年8月 用散点图描述变量间的关系 例题分析 例 为研究销售收入与广告费用支出之间的关系 某医药管理部门随机抽取20家药品生产企业 得到它们的年销售收入和广告费用支出 万元 的数据如下 绘制散点图描述销售收入与广告费用之间的关系 原始数据 2008年8月 散点图 销售收入和广告费用的散点图 8 1 3用相关系数度量关系强度 8 1变量间的关系 2008年8月 相关系数 correlationcoefficient 度量变量之间线性关系强度的一个统计量若相关系数是根据总体全部数据计算的 称为总体相关系数 记为 若是根据样本数据计算的 则称为样本相关系数 简称为相关系数 记为r也称为Pearson相关系数 Pearson scorrelationcoefficient 样本相关系数的计算公式 用Excel计算相关系数 2008年8月 相关系数的性质 性质1 r的取值范围是 1 1 r 1 为完全相关r 1 为完全正相关r 1 为完全负正相关r 0 不存在线性相关关系 1 r 0 为负相关0 r 1 为正相关 r 越趋于1表示关系越强 r 越趋于0表示关系越弱 2008年8月 相关系数的性质 性质2 r具有对称性 即x与y之间的相关系数和y与x之间的相关系数相等 即rxy ryx性质3 r数值大小与x和y原点及尺度无关 即改变x和y的数据原点及计量尺度 并不改变r数值大小性质4 仅仅是x与y之间线性关系的一个度量 它不能用于描述非线性关系 这意为着 r 0只表示两个变量之间不存在线性相关关系 并不说明变量之间没有任何关系性质5 r虽然是两个变量之间线性关系的一个度量 却不一定意味着x与y一定有因果关系 2008年8月 相关系数的经验解释 r 0 8时 可视为两个变量之间高度相关0 5 r 0 8时 可视为中度相关0 3 r 0 5时 视为低度相关 r 0 3时 说明两个变量之间的相关程度极弱 可视为不相关上述解释必须建立在对相关系数的显著性进行检验的基础之上 2008年8月 相关系数的显著性检验 检验的步骤 1 检验两个变量之间是否存在线性相关关系采用R A Fisher提出的t检验检验的步骤为提出假设 H0 H1 0计算检验的统计量用Excel中的 TDIST 函数得双尾计算P值 并与显著性水平 比较 并作出决策若P 拒绝H0 2008年8月 相关系数的显著性检验 例题分析 例 检验销售收入与广告费用之间的相关系数是否显著 0 05 提出假设 H0 H1 0计算检验的统计量3 用Excel中的 TDIST 函数得双尾P 2 743E 09 0 05 拒绝H0 销售收入与广告费用之间的相关系数显著 8 2一元线性回归的估计和检验8 2 1一元线性回归模型8 2 2参数的最小二乘估计8 2 3回归直线的拟合优度8 2 4显著性检验 第8章一元线性回归 8 2 1一元线性回归模型 8 2一元线性回归的估计和检验 2008年8月 什么是回归分析 regressionanalysis 重点考察考察一个特定的变量 因变量 而把其他变量 自变量 看作是影响这一变量的因素 并通过适当的数学模型将变量间的关系表达出来利用样本数据建立模型的估计方程对模型进行显著性检验进而通过一个或几个自变量的取值来估计或预测因变量的取值 2008年8月 回归模型的类型 2008年8月 一元线性回归 涉及一个自变量的回归因变量y与自变量x之间为线性关系被预测或被解释的变量称为因变量 dependentvariable 用y表示用来预测或用来解释因变量的一个或多个变量称为自变量 independentvariable 用x表示因变量与自变量之间的关系用一个线性方程来表示 2008年8月 一元线性回归模型 linearregressionmodel 描述因变量y如何依赖于自变量x和误差项 的方程称为回归模型一元线性回归模型可表示为y b0 b1x ey是x的线性函数 部分 加上误差项线性部分反映了由于x的变化而引起的y的变化误差项 是随机变量反映了除x和y之间的线性关系之外的随机因素对y的影响是不能由x和y之间的线性关系所解释的变异性 0和 1称为模型的参数 2008年8月 一元线性回归模型 基本假定 因变量x与自变量y之间具有线性关系在重复抽样中 自变量x的取值是固定的 即假定x是非随机的误差项 满足正态性 是一个服从正态分布的随机变量 且期望值为0 即 N 0 2 对于一个给定的x值 y的期望值为E y 0 1x方差齐性 对于所有的x值 的方差一个特定的值 的方差也都等于2都相同 同样 一个特定的x值 y的方差也都等于 2独立性 独立性意味着对于一个特定的x值 它所对应的 与其他x值所对应的 不相关 对于一个特定的x值 它所对应的y值与其他x所对应的y值也不相关 2008年8月 估计的回归方程 estimatedregressionequation 总体回归参数和是未知的 必须利用样本数据去估计用样本统计量和代替回归方程中的未知参数和 就得到了估计的回归方程一元线性回归中估计的回归方程为 其中 是估计的回归直线在y轴上的截距 是直线的斜率 它表示对于一个给定的x的值 是y的估计值 也表示x每变动一个单位时 y的平均变动值 8 2 2参数的最小二乘估计 8 2一元线性回归的估计和检验 2008年8月 参数的最小二乘估计 methodofleastsquares 德国科学家KarlGauss 1777 1855 提出用最小化图中垂直方向的误差平方和来估计参数使因变量的观察值与估计值之间的误差平方和达到最小来求得和的方法 即 用最小二乘法拟合的直线来代表x与y之间的关系与实际数据的误差比其他任何直线都小 2008年8月 KarlGauss的最小化图 x y xn yn x1 y1 x2 y2 xi yi 2008年8月 参数的最小二乘估计 和的计算公式 根据最小二乘法 可得求解和的公式如下 2008年8月 参数的最小二乘估计 例题分析 例 求销售收入与广告费用的估计回归方程 并解释回归系数的含义 第1步 选择 工具 下拉菜单 并选择 数据分析 选项第2步 在分析工具中选择 回归 选择 确定 第2步 当对话框出现时在 Y值输入区域 设置框内键入Y的数据区域在 X值输入区域 设置框内键入X的数据区域在 置信度 选项中给出所需的数值在 输出选项 中选择输出区域在 残差 分析选项中选择所需的选项 用Excel进行回归分析 2008年8月 参数的最小二乘估计 例题分析 例 求销售收入与广告费用的估计回归方程 并解释回归系数的含义 2008年8月 参数的最小二乘估计 例题分析 8 2 3回归直线的拟合优度 8 2一元线性回归的估计和检验 2008年8月 变差 因变量y的取值是不同的 y取值的这种波动称为变差 变差来源于两个方面由于自变量x的取值不同造成的除x以外的其他因素 如x对y的非线性影响 测量误差等 的影响对一个具体的观测值来说 变差的大小可以通过该实际观测值与其均值之差来表示 2008年8月 误差分解图 x y 2008年8月 误差平方和的分解 误差平方和的关系 SST SSR SSE 总平方和 SST 回归平方和 SSR 残差平方和 SSE 2008年8月 误差平方和的分解 三个平方和的意义 总平方和 SST totalsumofsquares 反映因变量的n个观察值与其均值的总误差回归平方和 SSR sumofsquaresofregression 反映自变量x的变化对因变量y取值变化的影响 或者说 是由于x与y之间的线性关系引起的y的取值变化 也称为可解释的平方和残差平方和 SSE sumofsquaresoferror 反映除x以外的其他因素对y取值的影响 也称为不可解释的平方和或剩余平方和 2008年8月 判定系数R2 coefficientofdetermination 回归平方和占总误差平方和的比例 反映回归直线的拟合程度取值范围在 0 1 之间R2 1 说明回归方程拟合的越好 R2 0 说明回归方程拟合的越差决定系数平方根等于相关系数 用Excel进行回归 2008年8月 估计标准误差 standarderrorofestimate 实际观察值与回归估计值误差平方和的均方根反映实际观察值在回归直线周围的分散状况对误差项 的标准差 的估计 是在排除了x对y的线性影响后 y随机波动大小的一个估计量反映用估计的回归方程预测y时预测误差的大小计算公式为 用Excel进行回归 8 2 4显著性检验 8 2一元线性回归的估计和检验 2008年8月 线性关系的检验 检验自变量与因变量之间的线性关系是否显著将回归均方 MSR 同残差均方 MSE 加以比较 应用F检验来分析二者之间的差别是否显著回归均方 回归平方和SSR除以相应的自由度 自变量的个数k 残差均方 残差平方和SSE除以相应的自由度 n k 1 2008年8月 线性关系的检验 检验的步骤 提出假设H0 1 0线性关系不显著 2 计算检验统计量F 确定显著性水平 并根据分子自由度1和分母自由度n 2求统计量的P值作出决策 若P 拒绝H0 表明两个变量之间的线性关系显著 用Excel进行回归 2008年8月 回归系数的检验和推断 在一元线性回归中 等价于线性关系的显著性检验采用t检验 检验x与y之间是否具有线性关系 或者说 检验自变量x对因变量y的影响是否显著 理论基础是回归系数的抽样分布 2008年8月 回归系数的检验和推断 样本统计量的分布 是根据最小二乘法求出的样本统计量 它有自己的分布的分布具有如下性质分布形式 正态分布数学期望 标准差 由于 未知 需用其估计量se来代替得到的估计的标准差 2008年8月 回归系数的检验和推断 检验步骤 提出假设H0 b1 0 没有线性关系 H1 b1 0 有线性关系 计算检验的统计量 确定显著性水平 计算出统计量的P值 并做出决策P 拒绝H0 表明自变量是影响因变量的一个显著因素 2008年8月 回归系数的检验和推断 b1和b0的置信区间 b1在1 置信水平下的置信区间为b0在1 置信水平下的置信区间为 用Excel进行回归 8 3利用回归方程进行预测8 3 1平均值的置信区间8 3 2个别值的预测区间 第8章一元线性回归 2008年8月 区间估计 对于自变量x的一个给定值x0 根据回归方程得到因变量y的一个估计区间区间估计有两种类型置信区间估计 confidenceintervalestimate 预测区间估计 predictionintervalestimate 8 3 1平均值的置信区间 8 3利用回归方程进行预测 2008年8月 平均值的置信区间 利用估计的回归方程 对于自变量x的一个给定值x0 求出因变量y的平均值的估计区间 这一估计区间称为置信区间 confidenceinterval E y0 在1 置信水平下的置信区间为 2008年8月 个别值的预测区间 利用估计的回归方程 对于自变量x的一个给定值x0 求出因变量y的一个个别值的估计区间 这一区间称为预测区间 predictioninterval y0在1 置信水平下的预测区间为 2008年8月 置信区间和预测区间 2008年8月 用Excel中的FORECAST函数进行线性回归的点预测 第1步 选择 fx 插入函数 并选择 统计 函数中的FORECAST x known y s known x s 函数第2步 当对话框出现时在 X 为需要进行预测的数据点 或数据区域 在 known y s 中输入y的数据区域在 known x s 中输入x的数据区域 注 若要同时返回一组预测值 则需要首先选择输出区域 然后同时按下 Ctrl Shift Enter 键 用FORECAST函数进行点预测 2008年8月 用SPSS进行回归 第1步 选择 Analyze 下拉菜单 并选择 Regression linear 选项 进入主对话框第2步 在主对话框中将因变量 本例为销售收入 选入 Dependent 将自变量 本例为广告费用 选入 Independent s 第3步 点击 Save 在 PredictedValues 下选中 Unstandardized 输出点预测值 在 Predictioninterval 下选中 Mean 和 Individual 输出置信区间和预测区间 在 ConfidenceInterval 中选择所要求的置信水平 隐含值95 一般不用改变 在 Residuals 下选中 Unstandardized 和 standardized 输出残差和标准化残差 点击 Continue 回到主对话框 点击 OK 用SPSS进行回归 2008年8月 置信区间和预测区间 例题分析 点预测值 置信线 预测线 2008年8月 置信区间和预测区间 例题分析 2008年8月 预测时需要注意的问题 在利用回归方程进行估计或预测时 不要用样本数据之外的x值去预测相对应的y值因为在一元线性回归分析中 总是假定因变量y与自变量x之间的关系用线性模型表达是正确的 但实际应用中 它们之间的关系可能是某种曲线此时我们总是要假定这条曲线只有一小段位于x测量值的范围之内 如果x的取值范围是在xL和xU之间 那么可以用所求出的利用回归方程对处于xL和xU之间的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论