




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等数学(下)模拟试卷一一、 填空题(每空3分,共15分)(1)函数的定义域为 (2)已知函数,则 (3)交换积分次序, (4)已知是连接两点的直线段,则 (5)已知微分方程,则其通解为 二、选择题(每空3分,共15分)(1)设直线为,平面为,则( )A. 平行于 B. 在上 C. 垂直于 D. 与斜交(2)设是由方程确定,则在点处的( )A. B. C. D.(3)已知是由曲面及平面所围成的闭区域,将在柱面坐标系下化成三次积分为( ) A. B. C. D. (4)已知幂级数12nnnnx=,则其收敛半径( )A. B. C. D. (5)微分方程的特解的形式为( ) A. B. C. D.得分阅卷人三、计算题(每题8分,共48分)1、 求过直线:且平行于直线:的平面方程2、 已知,求, 3、 设,利用极坐标求4、 求函数的极值 5、计算曲线积分, 其中为摆线从点到的一段弧6、求微分方程 满足 的特解四.解答题(共22分)1、利用高斯公式计算,其中由圆锥面与上半球面所围成的立体表面的外侧 2、(1)判别级数的敛散性,若收敛,判别是绝对收敛还是条件收敛;()(2)在求幂级数的和函数()高等数学(下)模拟试卷二一填空题(每空3分,共15分)(1)函数的定义域为 ; (2)已知函数,则在处的全微分 ;(3)交换积分次序, ;(4)已知是抛物线上点与点之间的一段弧,则 ;(5)已知微分方程,则其通解为 .二选择题(每空3分,共15分)(1)设直线为,平面为,则与的夹角为( );A. B. C. D. (2)设是由方程确定,则( );A. B. C. D. (3)微分方程的特解的形式为( ); A. B. C. D.(4)已知是由球面所围成的闭区域, 将在球面坐标系下化成三次积分为( );ABC D.(5)已知幂级数,则其收敛半径( ).A. B. C. D. 得分阅卷人三计算题(每题8分,共48分)5、 求过且与两平面和平行的直线方程 .6、 已知,求, .7、 设,利用极坐标计算 .得分8、 求函数的极值.9、 利用格林公式计算,其中为沿上半圆周、从到的弧段.6、求微分方程 的通解.四解答题(共22分)1、(1)()判别级数的敛散性,若收敛,判别是绝对收敛还是条件收敛; (2)()在区间内求幂级数的和函数 . 2、利用高斯公式计算,为抛物面的下侧高等数学(下)模拟试卷一参考答案一、填空题:(每空3分,共15分)1、 2、 3、 4、 5、 二、选择题:(每空3分,共15分) 1.2.3.45.三、计算题(每题8分,共48分)1、解: 平面方程为 2、解: 令 3、解:, 4解: 得驻点 极小值为 5解:,有曲线积分与路径无关 积分路线选择:从,从 6解: 通解为 代入,得,特解为 四、解答题1、解: 方法一: 原式 方法二: 原式 2、解:(1)令收敛, 绝对收敛。 (2)令 高等数学(下)模拟试卷二参考答案一、填空题:(每空3分,共15分)1、 2、 3、 4、 5、 二、选择题:(每空3分,共15分) 1. 2.3. 4.5. 三、计算题(每题8分,共48分)1、解: 直线方程为 2、解: 令 3、解:, 4解: 得驻点 极小值为 5解:,有 取从 原式 6解: 通解为 四、解答题 1、解:(1)令收敛, 绝对收敛 (2)令 , 2、解:构造曲面上侧 高等数学(下册)考试试卷(三)一、填空题(每小题3分,共计24分)1、设, 则 。 2、函数在点(0,0)处沿的方向导数= 。 3、设为曲面所围成的立体,如果将三重积分化为先对再对最后对三次积分,则I= 。 4、设为连续函数,则 ,其中。 5、 ,其中。 6、设是一空间有界区域,其边界曲面是由有限块分片光滑的曲面所组成,如果函数,在上具有一阶连续偏导数,则三重积分与第二型曲面积分之间有关系式: , 该关系式称为 公式。 7、微分方程的特解可设为 。 8、若级数发散,则 。二、选择题(每小题2分,共计16分) 1、设存在,则=( ) (A);(B)0;(C)2;(D)。 2、设,结论正确的是( )(A); (B);(C); (D)。3、若为关于的奇函数,积分域D关于轴对称,对称部分记为,在D上连续,则( ) (A)0;(B)2;(C)4; (D)2。 4、设:,则=( ) (A); (B); (C); (D)。5、设在面内有一分布着质量的曲线L,在点处的线密度为,则曲线弧的重心的坐标为( )()=; (B)=; (C)=; (D)=, 其中M为曲线弧的质量。、设为柱面和在第一卦限所围成部分的外侧,则 曲面积分( )(A)0; (B); (C); (D)。、方程的特解可设为( )(A),若; (B),若;(C),若;(D),若。、设,则它的Fourier展开式中的等于()(A); (B)0; (C); (D)。三、(分)设为由方程 确定的的函数,其中具有一阶连续偏导数,求。四、(分)在椭圆上求一点,使其到直线的距离最短。五、(分)求圆柱面被锥面和平面割下部分的面积。六、(分)计算,其中为球面 的部分的外侧。七、(10分)设,求。八、(10分)将函数展开成的幂级数。高等数学(下册)考试试卷(四)一、填空题(每小题3分,共计24分)1、由方程所确定的隐函数在点(1,0,-1)处的全微分 。2、椭球面在点(1,1,1 )处的切平面方程是 。3、设D是由曲线所围成,则二重积分 。4、设是由所围成的立体域,则三重积分= 。5、设是曲面介于之间的部分,则曲面积分 。 6、 。7、已知曲线上点M(0,4)处的切线垂直于直线,且满足微分方程,则此曲线的方程是 。8、设是周期T=的函数,则的Fourier系数为 。二、选择题(每小题2分,共计16分)1、函数的定义域是( )(A); (B); (C); (D) 。2、已知曲面在点P处的切平面平行于平面,则点P的坐标是( )(A)(1,-1,2); (B)(-1,1,2);(C)(1,1,2); (D)(-1,-1,2)。 3、若积分域D是由曲线及所围成,则=( )(A) ; (B) ;(C) ; (D)。4、设 , 则有( )(A); (B); (C); (D)。5、设为由曲面及平面所围成的立体的表面,则曲面积分=( )(A); (B); (C); (D)0 。、设是球面表面外侧,则曲面积分( )(A); (B); (C); (D)。、一曲线过点(e,1),且在此曲线上任一点的法线斜率,则此曲线方程为( )(A); (B); (C); (D)。、幂级数的收敛区间为()(A)(-1,1); (B); (C)(-1,1); (D)-1,1。三、(分)已知函数,其中具有二阶连续导数,求 的值。四、(分)证明:曲面上任意点处的切平面与三坐标面所围成立体的体积为一定值。五、(分)求抛物面的切平面,使得与该抛物面间并介于柱面内部的部分的体积为最小。六、(分)计算,其中为由(,)至(,)的那一弧段。七、(分)求解微分方程=0 。八、(分)求幂级数的和函数。高等数学(下册)考试试卷(五)一、填空题(每小题3分,共计24分)1、设是由方程所确定的二元函数,则 。、曲线在点(,)处的切线方程是 。、设是由,则三重积分 。、设为连续函数,是常数且,将二次积分化为定积分为 。、曲线积分与积分路径无关的充要条件为 。、设为,则 。、方程的通解为 。、设级数收敛,发散,则级数必是 。二、选择题(每小题2分,共计16分)、设,在点(,)处,下列结论( )成立。()有极限,且极限不为0; ()不连续;(); ()可微。、设函数有,且,则=( )();();();()。、设:,在D上连续,则在极坐标系中等于( )(); ();();()。、设是由及所围成,则三重积分() ;() ;() ;() 。、设是由所围立体表面的外侧,则曲面积分 ()0; ()1; ()3; ()2。、以下四结论正确的是( )() ;() () ;() 以上三结论均错误。、设具有一阶连续导数,。并设曲线积分与积分路径无关,则();();();()。 、级数的和等于( )()2/3;()1/3;()1;()3/2。三、求解下列问题(共计分)、(分)设求。、(分)设,具有连续偏导数,求。四、求解下列问题(共计分)、(分)计算,其中。、(分)计算,其中。五、(分)确定常数,使得在右半平面上,与积分路径无关,并求其一个原函数。六、(分)将函数展开为的幂级数。七、(分)求解方程。高等数学(下册)考试试卷(三)参考答案一、1、; 2、; 3、;4、; 6、,公式; 7、 8、。二、1、C; 2、B; 3、A ; 4、C ; 5、A ; 6、D ; 7、B ; 8、B 三、由于,由上两式消去,即得: 四、设为椭圆上任一点,则该点到直线的距离为 ;令,于是由: 得条件驻点: 依题意,椭圆到直线一定有最短距离存在,其中即为所求。五、曲线在面上的 投影为 于是所割下部分在面上的投影域为:, 由图形的对称性,所求面积为第一卦限部分的两倍。 六、将分为上半部分和下半部分, 在面上的投影域都为:于是: ; , =七、因为,即 所以 八、 又 高等数学(下册)考试试卷(四)参考答案一、1、;2、; 3、; 4、; 5、;6、; 7、;8、; 二、1、C; 2、C; 3、A; 4、D; 5、A; 6、B; 7、A; 8、C三、 故四、设是曲面上的任意点,则, 在该点处的法向量为: 于是曲面在点处的切平面方程为:+=0即+=1因而该切平面与三坐标面所围成的立体的体积为:这是一个定值,故命题得证。 五、由于介于抛物面,柱面及平面之间的立体体积为定值,所以只要介于切平面,柱面及平面之间的立体体积为最大即可。 设与切于点,则的法向量为,且,切平面方程为: 即 于是 则由,得驻点(1,0) 且 由于实际问题有解,而驻点唯一,所以当切点为(1,0,5)时,题中所求体积为最小。此时的切平面为:六、联接,并设由L及所围成的区域为D,则 七、令,则,于是原方程可化为: 即,其通解为 即故原方程通解为:八、易求得该幂级数的收敛区间为,令,则注意到,高等数学(下册)考试试卷(五)参考答案一、1、;2、;3、;4、; 5、对任意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国燃气行业自媒体传播特征与舆情引导策略研究报告
- 2025-2030中国燃气行业信用体系建设现状与发展路径研究
- 2025-2030中国燃气安全事故成因分析及预防措施研究报告
- msds考试题及答案
- 企业KPI考核方案设计与实施指南
- 新能源车辆销售技巧与客户服务指南
- 2025年内科护理学答题题库及答案
- 南山养猪知识培训班课件
- 人力资源管理法规与企业用工合规指南
- 2025年网络安全法相关法律法规知识考试题库与答案
- 2025年安徽萧县县直事业单位招聘115人笔试备考题库附答案详解
- 风险分级管控和隐患排查治理体系培训考试试题(附答案)
- 司法局社区矫正工作汇报
- 新质生产力区域经济发展
- 质量信得过班组知识培训课件
- 手术部(室)医院感染控制标准WST855-2025解读课件
- 2026年高考数学一轮复习三维设计创新-微拓展 圆锥曲线中的二级结论
- 2025中央八项规定精神学习教育知识测试竞赛试卷题库及答案
- 医学研究生中期研究进展汇报
- 人教版pep小学英语3至6年级知识点归纳
- 《无人机航迹规划》课程标准(高职)
评论
0/150
提交评论