




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Robotics technology trendsBy : Jim Pinto,San Diego, CA.USAWhen it comes to robots, reality still lags science fiction. But, just because robots have not lived up to their promise in past decades does not mean that they will not arrive sooner or later. Indeed, the confluence of several advanced technologies is bringing the age of robotics ever nearer-smaller, cheaper, more practical and cost-effective. Brawn, Bone & BrainThere are 3 aspects of any robot: Brawn:strength relating to physical payload that a robot can move. Bone:the physical structure of a robot relative to the work it does; this determines the size and weight of the robot in relation to its physical payload. Brain:robotic intelligence; what it can think and do independently; how much manual interaction is required. Because of the way robots have been pictured in science fiction, many people expect robots to be human-like in appearance. But in fact what a robot looks like is more related to the tasks or functions it performs. A lot of machines that look nothing like humans can clearly be classified as robots. And similarly, some human-looking robots are not much beyond mechanical mechanisms, or toys. Many early robots were big machines, with significant brawn and little else. Old hydraulically powered robots were relegated to tasks in the 3-D category:dull, dirty and dangerous. The technological advances since the first industry implementation have completely revised the capability, performance and strategic benefits of robots. For example, by the 1980s robots transitioned from being hydraulically powered to become electrically driven units. Accuracy and performance improved. Industrial robots already at workThe number of robots in the world today is approaching 1,000,000, with almost half that number in Japan and just 15% in the US. A couple of decades ago, 90% of robots were used in car manufacturing, typically on assembly lines doing a variety of repetitive tasks. Today only 50% are in automobile plants, with the other half spread out among other factories, laboratories, warehouses, energy plants, hospitals, and many other industries. Robots are used for assembling products, handling dangerous materials, spray-painting, cutting and polishing, inspection of products. The number of robots used in tasks as diverse as cleaning sewers, detecting bombs and performing intricate surgery is increasing steadily, and will continue to grow in coming years. Robot intelligenceEven with primitive intelligence, robots have demonstrated ability to generate good gains in factory productivity, efficiency and quality. Beyond that, some of the smartest robots are not in manufacturing; they are used as space explorers, remotely operated surgeons and even pets ,like Sonys AIBO mechanical dog. In some ways, some of these other applications show what might be possible on production floors if manufacturers realize that industrial robots dont have to be bolted to the floor, or constrained by the limitations of yesterdays machinery concepts. With the rapidly increasing power of the microprocessor and artificial intelligence techniques, robots have dramatically increased their potential as flexible automation tools. The new surge of robotics is in applications demanding advanced intelligence. Robotic technology is converging with a wide variety of complementary technologies-machine vision, force sensing (touch), speech recognition and advanced mechanics. This results in exciting new levels of functionality for jobs that were never before considered practical for robots. The introduction of robots with integrated vision and touch dramatically changes the speed and efficiency of new production and delivery systems. Robots have become so accurate that they can be applied where manual operations are no longer a viable option. Semiconductor manufacturing is one example, where a consistent high level of throughput and quality cannot be achieved with humans and simple mechanization. In addition, significant gains are achieved through enabling rapid product changeover and evolution that cant be matched with conventional hard tooling. Boosting Competitiveness As mentioned, robotic applications originated in the automotive industry. General Motors, with some 40-50,000 robots, continues to utilize and develop new approaches. The ability to bring more intelligence to robots is now providing significant new strategic options. Automobile prices have actually declined over the last two to three years, so the only way that manufacturers can continue to generate profits is to cut structural and production costs. When plants are converted to new automobile models, hundreds of millions of dollars are typically put into the facility. The focus of robotic manufacturing technology is to minimize the capital investment by increasing flexibility. New robot applications are being found for operations that are already automated with dedicated equipment. Robot flexibility allows those same automated operations to be performed more consistently, with inexpensive equipment and with significant cost advantages. Robotic AssistanceA key robotics growth arena is Intelligent Assist Devices (IAD).operators manipulate a robot as though it were a bionic extension of their own limbs with increased reach and strength. This is robotics technology not replacements for humans or robots, but rather a new class of ergonomic assist products that helps human partners in a wide variety of ways, including power assist, motion guidance, line tracking and process automation. IAD use robotics technology to help production people to handle parts and payloads, more, heavier, better, faster, with less strain. Using a human-machine interface, the operator and IAD work in tandem to optimize lifting, guiding and positioning movements. Sensors, computer power and control algorithms translate the operators hand movements into super human lifting power. New robot configurationsAs the technology and economic implications of Moores law continue to shift computing power and price, we should expect more innovations, more cost-effective robot configurations, more applications beyond the traditional service emphasis. The biggest change in industrial robots is that they will evolve into a broader variety of structures and mechanisms. In many cases, configurations that evolve into new automation systems wont be immediately recognizable as robots. For example, robots that automate semiconductor manufacturing already look quite different from those used in automotive plants. We will see the day when there are more of these programmable tooling kinds of robots than all of the traditional robots that exist in the world today. There is an enormous sea change coming; the potential is significant because soon robots will offer not only improved cost-effectiveness, but also advantages and operations that have never been possible before. Envisioning Vision Despite the wishes of robot researchers to emulate human appearance and intelligence, that simply hasnt happened. Most robots still cant see,versatile and rapid object recognition is still not quite attainable. And there are very few examples of bipedal, upright walking robots such as Honda P3, mostly used for research or sample demonstrations. A relatively small number of industrial robots are integrated with machine vision systems,which is why its called machine vision rather than robot vision. The early machine vision adopters paid very high prices, because of the technical expertise needed to such systems. For example, in the mid-1980s, a flexible manufacturing system from Cincinnati Milacron included a $900,000 vision guidance system. By 1998 average prices had fallen to $40,000, and prices continued to decline. Today, simple pattern matching vision sensors can be purchased for under $2,000 from Cognex, Omron and others. The price reductions reflect todays reduced computing costs, and the focused development of vision systems for specific jobs such as inspection. Robots already in use everywhereSales of industrial robots have risen to record levels and they have huge, untapped potential for domestic chores like mowing the lawn and vacuuming the carpet. Last year 3,000 underwater robots, 2,300 demolition robots and 1,600 surgical robots were in operation. A big increase is predicted for domestic robots for vacuum cleaning and lawn mowing, increasing from 12,500 in 2000 to almost 500,000 by the end of 2004. IBot Roomba floor cleaning robot is now available at under $200.00. In the wake of recent anthrax scares, robots are increasingly used in postal sorting applications. Indeed, there is huge potential to mechanize the US postal service. Some 1,000 robots were installed last year to sort parcels and the US postal service has estimated that it has the potential to use up to 80,000 robots for sorting. Look around at the robots around us today: automated gas pumps, bank ATMs, self-service checkout lanes,machines that are already replacing many service jobs. Fast-forward another few decades. It doesnt require a great leap of faith to envision how advances in image processing, microprocessor speed and human-simulation could lead to the automation of most boring, low-intelligence, low-paying jobs. Marshall Brain (yes, thats his name) founder of HowStuffW has written a couple of interesting essays about robotics in the future, well worth reading. He feels that it is quite plausible that over the next 40 years robots will displace most human jobs. According to Brains projections, in his essay Robotic Nation, humanoid robots will be widely available by 2030. They will replace jobs currently filled by people for work such as fast-food service, housecleaning and retail sales. Unless ways are found to compensate for these lost jobs, Brain estimates that more than 50% of Americans could be unemployed by 2055 replaced by robots.Intelligent robots will be everywhereThe world of HAL and Data, of sentient machines, is fast approaching. Indeed, in some ways it has already arrived as humanlike machines increasingly take on the work of humans. As processing power increases exponentially, and as MEMS technology brings smaller and smarter sensors and actuators, robots are the breeding ground for future-generation products with new, varied and exciting applications. Industrial robots The vast majority of robots are used by the manufacturing industry, for repetitive tasks such as painting auto-bodies and simple assembly. Some 100,000 new robots were installed worldwide in 2000, nearly half of them in Japan, the biggest user. There were nearly 800,000 industrial robots in existence at the end of 2002 and this is likely to rise to almost 1 million by the end of 2004. In the last decade the performance of robots has increased radically while at the same time prices have been plummeting. Today, manufacturing robots have a payback period as short as 1-2 years. In N. America, the price of robots relative to labor costs have fallen to 26, and as low as 12 if quality improvements are taken into consideration. Sales of industrial robots have risen to record levels and there is huge, untapped potential for domestic chores like mowing lawns and vacuuming carpets. New robot applications aboundAs robot intelligence increases, and as sensors, actuators and operating mechanisms become more sophisticated, other applications are now multiplying. There are now thousands of underwater robots, demolition robots and even robots used in long-distance surgery. Dozens of experimental search-and-rescue robots scoured the wreckage of the World Trade Centers collapsed twin towers. Teams of robotics experts were at Ground Zero operating experimental robots to probe the rubble and locate bodies. During the war in Afghanistan, robots were being used by the US military as tools for combat. They were sent into caves, buildings or other dark areas ahead of troops to help prevent casualties. After the recent anthrax scares, work has been ongoing to replace postal workers with robots. Indeed, there is huge potential to mechanize the U.S. postal service and some 1,000 robots were installed last year to sort parcels. The U.S. postal service has estimated that it has the potential to use up to 80,000 robots for sorting work, although existing models are not suitable for sorting letters. A giant walking robot is used to harvests forests, moving on six articulated legs, advancing forward and backward, sideways and diagonally. It can also turn in place and step over obstacles. At UC Berkeley, a tiny robot called Micromechanical Flying Insect has wings that flap with a rhythm and precision matched only by natural equivalents. The goal is to develop tiny, nimble devices that can, for example, surreptitiously spy on enemy troops, explore the surface of Mars or safely monitor dangerous chemical spills. A big increase is predicted for domestic robots for vacuum cleaning and lawn mowing. Robots to do these chores are practical today. An inexpensive house-cleaning robot was recently introduced a little battery-powered vacuum cleaner that scurries around the floor, sweeping up dust and dirt as it travels. Called Roomba, it costs just $199 and, by all accounts, is selling very well. Rodney Brooks ?iRobotRoomba is made by Massachusetts-based iRobot, one of many companies planning to launch a host of new robots over the next few years. New robotics products that will soon be introduced include autonomous floor cleaners and industrial tools built to do boring, dirty and dangerous work like inspecting oil wells. Of course, autonomous oil well inspectors arent as thrilling as the robotic servants that some visionaries have predicted. But robotics and artificial intelligence are working their way into everyday life, albeit in less dramatic ways. Rodney Brooks, Director of the MIT Artificial Intelligence Laboratory and Chairman of iRobot Corporation, has been involved in this transformation for decades. His latest book Flesh & Machines explores many themes related to life with robots. The book centers on Brooks own passion for creating what he calls situated creatures which we can eventually regard as our teachers and companions. Brooks MIT A.I. Lab is filled with robotic machines, from mechanical legs to humanoids that use human-like expressions and gestures as intuitive human-robot interfaces ?something Brooks believes will be critical to people accepting robots in their lives. The first generation of relatively mundane versions of these machines is already marching out of the lab. Rodney Brooks has a vision of a post-PC future in which sensors and microprocessors are wired into cars, offices and homes and carried in shirt pockets to retrieve information, communicate and do various tasks through speech and gesture interfaces. He insists that the age of smart, mobile machines is already beginning. You just have to know where to find them in oil wells, medical labs, financial services and construction companies. Military & defense applicationsNow iRobot has a US Defense contract to build a robot, about the size of a suitcase, which can climb stairs, crawl over ditches, survive three-story falls. Instead of carrying bombs, this robot has eyes and ears, transmitting what it sees and hears over a wireless link. This is a Packbot which can be thrown into a vehicle and then hurled through windows of buildings where the enemy may have hostages. In general, robotic systems are of great interest to the Department of Defense because they offer the ability to perform military actions at greater stand-off distances, allow dangerous missions to be performed with minimal risk to people. The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization for the Dept. of Defense. The DARPA Distributed Robotics Program seeks to work with qualified companies to develop tiny, biologically-inspired robot designs and new methods of robot control for military applications. DARPA is particularly interested in micro-miniature robots because they can be produced at relatively low unit cost and offer unique mission advantages. They can be carried and deployed by individuals and small teams to augment human capability, perform hazardous missions, and accomplish tasks that previously could not be unimagined. Potential applications include surveillance, reconnaissance, path finding, deception, weapon delivery, and small-scale actuation. For minefield detection, small sensors are mounted on hopping robots. Small robots can be sent into city pipelines for intelligence gathering. Robots used in large numbers can be used as decoys. Extremely small robots might be injected into small spaces to pick door locks. Because micro robots are similar to small animals and insects, biologically inspired designs (jumping, climbing, crawling, slithering, etc.) coupled with the use of MEMS and smart materials offer possibilities for novel and unique locomotion mechanisms. MEMS technology enables the integration of mechanical and electronic functions on a single silicon chip. Advanced microelectronic packaging using multi-chip modules and incorporating mixed signal electronics allows development of new ideas, integrating robotic form and function. Robots for military applications can either be fully controlled by humans, semi-autonomously controlled, or operate autonomously. To allow miniature robots to perform for extended periods of time in varied environments, innovative methods are needed to reduce power requirements, regulate energy use and provide rapid recharging. Robotics ?an exciting new development arenaThe typical Automation techie has knowledge an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 3.17 明朝的灭亡 说课稿 2023-2024学年统编版历史七年级下册
- 2025光纤光缆购销合同
- 2025建筑材料采购分包合同
- 2024年七年级历史上册 第一单元 史前时期:中国境内人类的活动 第3课 远古的传说说课稿 新人教版
- 沪科版高一物理必修二第一章第一节平抛运动教学设计
- 2.2 充分条件、必要条件、充要条件说课稿-2025-2026学年高中数学苏教版2019必修第一册-苏教版2019
- 福建省16次年会教学设计《探索生长素类似物促进插条生根的最适浓度》教案
- 印刷厂员工更衣室管理规定
- 厦门事业单位笔试真题2025
- 2025合同样本-实习生合同范本
- 旧楼拆除防尘降噪专项措施
- 2025年中国毛皮服装市场调查研究报告
- 矿山开采运输管理制度
- 律师行业税务问题课件
- 2025年中医适宜技术考试练习题库(含答案)
- DB63T 1599-2025 高海拔高寒地区公路边坡生态防护技术设计规范
- 横向合同终止协议
- Module 9 great inventions Unit 3 教学设计 2024-2025学年外研版九年级英语上册
- 医院危险化学品安全管理制度
- 特殊教育《学习剪指甲》
- 投资担保合同范本7篇
评论
0/150
提交评论