勾股定理第一课时教学设计 (2).doc_第1页
勾股定理第一课时教学设计 (2).doc_第2页
勾股定理第一课时教学设计 (2).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理教学设计 一、内容和内容解析 本节课为新人教版八年级数学下册第十七章第一节,勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。二、教学目标1、 经历勾股定理的探究过程。了解关于勾股定理的一些文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感。2、 能用勾股定理解决一些简单问题。三、教学重难点教学重点:探索并证明勾股定理教学难点:勾股定理的探索和证明四、学情分析学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。五、教学过程设计(一)创设情境,导入新课。教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”【设计意图】以国际数学家大会-“赵爽弦图”为背景导入新课,提出问题,可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心; 问题1你见过这个图案吗?它由哪些基本图形组成? 问题2:三个正方形A,B,C 的面积有什么关系?图形课件展示追问由这三个正方形A,B,C的边长构成的等腰直角三角形三条边长度间 有怎样的特殊关系?学生发言,教师倾听。视学生回答的重点板书【设计意图】由三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。问题4:这一结论是不是所有的直角三角形都具备呢?教师利用ppt课件展示,追问正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。 问题5:通过前面的探究,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。学生描述,教师板书。 【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察-探究-整理-归纳的数学方法,体验学习的成功。(三)引导实验,探究论证,形成体系。问题6:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。教师用ppt课件精讲强调面积的无缝、不重叠拼接得到面积相等。【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。问题7:你还有其他的证明方法吗?学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。学生或小组间进行合作实验,共同协作探究;教师巡视指导。【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。问题8:教师选取代表性的拼接方法,全班展示。【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。 (四)归纳提高,巩固运用,形成能力。练习1求图中字母所代表的正方形的面积练习2如图,所有的三角形都是直角三角形,四边形都是正方形,已知正方形A,B,C,D 的边长分别是12,16,9,12求最大正方形E 的面积练习3求下列直角三角形中未知边的长度课件展示以上各题【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。(五)归纳小结,反思提高(1)勾股定理的内容是什么?它有什么作用?(2)在探究勾股定理的过程中,我们经历了怎样的探究过程?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。作业1在等边三角形中边长为10,则该三角形的面积是多少?【设计意图】综合题,考查等边三角形的三线合一、30度角所对的直角边等于斜边的一半、勾股定理、三角形面积知识;培养学生的转化意识。2在一个直角三角形中两边的长为3、4,则第三条边长度是多少?【设计意图】分类讨论。考查直角三角形的斜边最长及勾股定理。3、湖中直立一荷花,花朵高水1m整,忽然一阵风吹来,荷花吹离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论