多元的典型例题.docx_第1页
多元的典型例题.docx_第2页
多元的典型例题.docx_第3页
多元的典型例题.docx_第4页
多元的典型例题.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多元的典型例题李子奈习题里的例题:例3下表为有关经批准的私人住房单位及其决定因素的4个模型的估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量)。数据为美国40个城市的数据。模型如下:式中housing实际颁发的建筑许可证数量,density每平方英里的人口密度,value自由房屋的均值(单位:百美元),income平均家庭的收入(单位:千美元),popchang19801992年的人口增长百分比,unemp失业率,localtax人均交纳的地方税,statetax人均缴纳的州税变量模型A模型B模型C模型DC813 (0.74)-392 (0.81)-1279 (0.34)-973 (0.44)Density0.075 (0.43)0.062 (0.32) 0.042 (0.47)Value-0.855 (0.13)-0.873 (0.11)-0.994 (0.06)-0.778 (0.07)Income110.41 (0.14)133.03 (0.04)125.71 (0.05)116.60 (0.06)Popchang26.77 (0.11)29.19 (0.06)29.41 (0.001)24.86 (0.08)Unemp-76.55 (0.48)Localtax-0.061 (0.95)Statetax-1.006 (0.40)-1.004 (0.37)RSS4.763e+74.843e+74.962e+75.038e+7R20.3490.3380.3220.3121.488e+61.424e+61.418e+61.399e+6AIC1.776e+61.634e+61.593e+61.538e+6检验模型A中的每一个回归系数在10%水平下是否为零(括号中的值为双边备择p-值)。根据检验结果,你认为应该把变量保留在模型中还是去掉?在模型A中,在10%水平下检验联合假设H0:bi =0(i=1,5,6,7)。说明被择假设,计算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。说明你的结论。哪个模型是“最优的”?解释你的选择标准。说明最优模型中有哪些系数的符号是“错误的”。说明你的预期符号并解释原因。确认其是否为正确符号。解答1:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t分布表。根据题意,如果p-值0,事实上其估计值确是大于零的。同样地,随着人口的增加,住房需求也会随之增加,所以我们预期40,事实其估计值也是如此。随着房屋价格的上升,我们预期对住房的需求人数减少,即我们预期3估计值的符号为负,回归结果与直觉相符。出乎预料的是,地方税与州税为不显著的。由于税收的增加将使可支配收入降低,所以我们预期住房的需求将下降。虽然模型A是这种情况,但它们的影响却非常微弱。例3-19假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析;假设不管是否有假期,食堂都营业。不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失,无法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括号内为T值): (2.6) (6.3) (0.61) (5.9) 要求:(1)试判定每项结果对应着哪一个变量?(2)对你的判定结论做出说明。 答案2:答案并不唯一,猜测为:为学生数量,为附近餐厅的盒饭价格,为气温,为校园内食堂的盒饭价格; 理由是被解释变量应与学生数量成正比,并且应该影响显著;与本食堂盒饭价格成反比,这与需求理论相吻合;与附近餐厅的盒饭价格成正比,因为彼此是替代品;与气温的变化关系不是十分显著,因为大多数学生不会因为气温升高不吃饭。期末试题里的例题:1、(本题满分20分)9家上市公司绩效(NER)与基金持股比例(RATE)关系的OLS估计结果如下表:(1) 根据输出结果给出一元线性回归模型表达式。(2) 给出(1)、(2)、(3)、(4)、(5)划线处的五个数字,并给出计算过程(计算结果保留小数点后四位小数)(3) 你认为上述问题需要考虑一阶自相关问题吗?(4) 对该问题进行异方差的怀特检验,结果如下: 怀特统计量是多少?它服从自由度为多少的什么分布?如果给出相伴概率是0.89,试判断原回归式误差项中是否存在异方差。答案3: 1、,由F和的关系可得,注:这一问有多种解法。,所以无须考虑一阶自相关问题,相伴概率为0.890.05,表明不存在异方差。庞浩习题的例题:计 算 题1、家庭消费支出(Y)、可支配收入()、个人个财富()设定模型如下: 回归分析结果为:LS / Dependent Variable is YDate: 18/4/02 Time: 15:18Sample: 1 10Included observations: 10 Variable Coefficient Std. Error T-Statistic Prob. C 24.4070 6.9973 _ 0.0101 - 0.3401 0.4785 _ 0.5002 0.0823 0.0458 0.1152R-squared _ Mean dependent var 111.1256 Adjusted R-squared 0.9504 S.D. dependent var 31.4289 S.E. of regression _ Akaike info criterion 4.1338 Sum squared resid 342.5486 Schwartz criterion 4.2246 Lo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论