




免费预览已结束,剩余65页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结构方程模型原理及其在认知心理学中的应用 一 结构方程模型简介 一 结构方程模型简介 结构方程模型 StructuralEquationModeling 简称SEM 又称为协方差结构模型 CovarianceStructureModels 简称CSM 线形结构模型 thelinearstructuralrelationsmodels 协方差结构分析 theanalysisofcovariancestructure 矩结构模型 themomentsstructuremodels 结构化线形模型中的潜变量方程系统 Latentvariableequationsystemlinearmodel 以及LISREL模型 一 结构方程模型简介 1966年 Bock和Bargmann最早提出了 验证性因素分析 Joreskog 1973 VanThillo 1972 Kellsling 1972 和Wiley 1973 将Bock和Bargmann的模型逐渐演变 使之成为一个更通用的模型 即协方差结构模型 1966年 K Joreskog在教育评价测验中发展出一系列通用的程序 如LISREL 使得协方差结构模型得到了长足发展 一 结构方程模型简介 结构方差模型主要是利用一定的统计手段 对复杂的理论模式加以处理 并根据模式与数据关系的一致性程度 对理论模式做出适当的评价 从而达到证实或证伪研究者事先假设的理论模式的目的 结构方差模型实际上是一般线形模式 GeneralLinearModels GLM 的扩展 一般线形模式包括 路径分析 典型相关 因素分析 判别分析 多元方差分析以及多元回归分析 它们只是结构方程模型的特例 但许多模式均可以用SEM程序来处理和评价 一 结构方程模型简介 结构方程模型由一种因素模型和一种结构方程式模型组成 将心理测量学和经济计量学有效的结合起来 一个包括一组自变量和一组或更多因变量的计量模型 模型由两部分组成 测量模型 即验证性因素分析模型 ConfirmatoryFactorAnalysis CFA 和结构模型 又称潜变量的因果关系模型 CausalModel 测量模型主要是用于表示观测变量和潜变量之间的关系 而结构方程模型主要是用于来表示潜变量之间的关系 其相应的统计分析软件 SPSS AMOS与LISREL的应用 特别是AMOS的操作与应用 一 结构方程模型简介 结构方程模型是基于变量的协方差矩阵来分析变量之间关系的一种统计方法 是路径分析和因素分析的有机结合 对于那些不能准确 直接测量的潜变量 latentvariable 如家庭的社会经济地位 学业成就等 可以用一些外显指标 observedvariable 如学生父母的教育程度和父母职业及收入作为家庭社会经济地位的指标 以学生的语文 数学英语三科成绩作为学业成就的指标 去间接测量 结构方程模型可以同时处理潜变量及指标 这些指标含有随机误差和系统误差 前者指测量上不准确性的行为 与传统的测量误差相当 后者反映指标也同时测量潜变量 即因子 以外的特性 与因子分析中的特殊因子相当 一 结构方程模型的步骤 模型设定 modelspecification 研究者先要根据理论或以往的研究成果来设定假设的初始理论模型 模型识别 modelidentification 决定所研究的模型是否能够求出参数估计的唯一解 模型估计 modelestimation 模型参数可以采用几种不同的方法来估计 追常用的模型估计方法是最大似然法和广义最小二乘法 模型评价modelevaluation 对模型与数据间是否拟合进行评价 并与替代的拟合指标进行比较 模型修正 modelmodification 如果模型不能很好地拟合数据 就需要对模型进行修正和再次设定 二 结构方程模型的结构及假设 观察变量现实生活中可以直接测量获得的如 研究 摄入热量与体重之间的关系 潜变量 构想变量 现实生活中无法直接测量获得的 必须通过一些观察变量间接获得 如 社会地位 自尊 生活满意度 外生 外衍 变量 内生 内衍 变量外衍变量 在指标中没有注明它的变化是由什么因素造成的 在模型内明白影响它的变量 外衍变量之间通常用双箭头的直线或曲线表示它们之间的相关关系 内衍变量 由模型中的另外一些变量所影响的那些变量 内衍变量的变化是由同一模型中的外衍变量或其他内衍变量决定的 但也可能由一部分模型外的因素决定的 结构方程模型的结构 测量模型 验证性因素分析模型 结构模型 描述潜变量之间的关系 图例 情商 智商 学业成绩 人际关系 测量模型 验证性因素分析模型 如社会经济指标与社会经济地位 外源指标 如6项社经指标 组成的向量 内生指标 如语 数 英成绩 组成的向量 外源指标与外源潜变量之间的关系 是外源指标在外源潜变量上的因子负荷矩阵 经济地位指标与潜经济地位的 内生指标与内生潜变量之间的关系 是内生指标在内生潜变量上的因子负荷矩阵 成绩与学业成就 外源指标X的误差项 内生指标y的误差项 结构模型 描述潜变量之间的关系 内生潜变量 如学业成就 外源潜变量 如社会经济地位 内生潜变量之间的关系 如学业成绩与其他内生潜变量的关系 外源潜变量对内生潜变量的影响 如社会经济地位对学业成就的影响 结构方程的残差项 反映了在方程中未能被解释的部分 结构方程模型常用图标的含义 潜变量因子 观测变量或指标 单向影响或效应 相关 内生潜变量未被解释的部分 测量误差 情商 智商 学业成绩 人际关系 结构方程模型的设定 结构方程模型主要是一种验证性 confirmatory 技术 而不是一种探索性 exploratory 技術 其虚无假设与对立假设如下 H0 观察资料 理论模型H1 观察资料 理论模型SEM模型的两大功能 测量模型 MeasurementModel 结构模型 StructuralModel 结构方程模型的优点 1 同时处理多个因变量2 容许自变量和因变量含测量误差3 同时估计因子结构和因子关系4 容许更大弹性的测量模型5 估计整个模型的拟合程度 三 结构方程模型的具体应用事例 举例 100名学生在9个不同学科间的相关系数 语文 英语 政治 数学 物理 化学 生物 历史 地理 文科 理科 社会 语文 英语 政治 数学 物理 化学 生物 历史 地理 原始矩阵 再生矩阵 模型dfNNFICFI需要估计的参数个数 M12440 973 98221 9Load 9Uniq 3Corr M227503 294 47118 9Load 9Uniq M326255 647 74519 9Load 9Uniq 1Corr M426249 656 75219 9Load 9Uniq 1Corr M527263 649 72718 9Load 9Uniq M624422 337 55821 9Load 9Uniq 3Corr M721113 826 89824 9Load 9Uniq 6Corr 模型比较 自由度 拟合程度 不能保证最好 可能存在更简洁又拟合得很好的模型Input 相关 或协方差 矩阵一个或多个有理据的可能模型Output 既符合某指定模型 又与差异最小的矩阵估计各路径参数 因子负荷 因子相关系数等 计算出各种拟合指数 四 因果模型 因果模型概述 因果模型或路径分析是在因果关系的研究方法不断更新的过程中产生的一种统计方法 因果模型方法由遗传学家SewellWright在20世纪20年代为分解代际间的遗传影响首先发展起来的 与多元回归相比只注重分析自变量与因变量独立作用的局限相比 因果模型能清晰并全面地反映出变量间的关系 不仅是变量间的直接因果关系 甚至包括间接的因果关系和其他的非因果关系 因果模型是一种 证实性技术 研究人员在量化分析之前需要对变量间的因果关系做一个假定 然后通过因果模型来验证是否合理 而不是通过它来寻找和发现因果关系 因果模型的基本类型 递归模型 因果关系结构中全部为单向链条关系 无反馈作用的模型 也就是相关系数为 非递归模型 在因果模型中有反馈作用的模型 递归模型如图 X3 X1 X2 X4 X5 e3 e5 e4 因果模型的识别 模型识别的情况 不可识别 under identified 模型的识别恰好识别 just identified 可以识别 identifiable 过度识别 over identified如果模型中的一个参数是不能识别的 则模型也是不足识别的 一个恰好识别的的模型指所有的参数都是恰好识别的 因果模型的参数估计 在递归模型中可以直接通过最小二乘法回归或运用线形代数求解方程的方法来取得路径系数的估计值 而非递归模型不能直接通过最小二乘法求解参数 要复杂的多 甚至无解 因果模型的效应分解 变量间的相关系数 因果效应 非因果效应 间接因果效应 虚假相关 未分解效应 直接因果效应 递归模型的效应分解及方法 路径 doc图表 X3 X1 X2 X4 X5 e3 e5 e4 06 16 36 39 56 97 21 23 16 03 四 验证性因子分析 验证性因素分析的基本原理 探索性因素分析和验证性因素分析的区别 验证性因素分析是在探索因素分析的基础上发展起来的 在探索性因素分析中 由于因素的数量和因素之间的关系都是未知的 因此所有的因素负荷 因素相关 唯一性方差都是待估的 在验证性因素分析中 可以根据已有的知识和研究 假设因素之间的关系 从而减少待估量 并对可以对假设的模型进行验证 如果探索性因素分析带有一种不确定性的话 那么验证性因素分析更符合科学研究的假设 验证 修正 修正的过程 是对已有的理论模型和数据拟合程度的一种验证 验证性因素分析的步骤 模型定义模型识别参数估计 未加权最小在二乘法 ULS 广义最小二乘法 GLS 极大似然估计 ML 最常用的估计方法 正态分布 模型评价 NFI和NNFI有较好的稳定性 RMSEA也是常用的拟合指数 模型修正 省俭原则 验证性因素分析的步骤 验证性因素分析模式E1E3E2E4 x1 x2 F1 F2 x3 x4 验证性因素分析举例 17个题目 学习态度及取向A B C D E4 4 3 3 3题350个学生 ConfirmatoryFactorAnalysisExample1DANI 17NO 350MA KMKMSY1 341 MONX 17NK 5LX FU FIPH STTD DI FRPALX4 10000 4 01000 3 00100 3 00010 3 00001 OUMISSSC NumberofInputVariables17 读入的变量个数 NumberofY Variables0 Y 变量个数 NumberofX Variables17 X 变量个数 NumberofETA Variables0 Y 因子个数 NumberofKSI Variables5 X 因子个数 NumberofObservations350 样品个数 ParameterSpecifications参数设定LAMBDA XKSI1KSI2KSI3KSI4KSI5 VAR110000VAR220000VAR330000VAR440000VAR505000VAR606000VAR707000VAR808000VAR900900VAR10001000VAR11001100VAR12000120VAR13000130VAR14000140VAR15000015VAR16000016VAR17000017 PHIKSI1KSI2KSI3KSI4KSI5 KSI10KSI2180KSI319200KSI42122230KSI5242526270THETA DELTAVAR1VAR2VAR3VAR4VAR5VAR6VAR7VAR8VAR9VAR1028293031323334353637VAR11VAR12VAR13VAR14VAR15VAR16VAR1738394041424344 NumberofIterations 19LISRELEstimates MaximumLikelihood 参数估计LAMBDA XKSI1KSI2KSI3KSI4KSI5 VAR10 59 0 06 9 49VAR20 58 0 06 9 30VAR30 62 0 06 9 93VAR40 05 0 07 0 81 VAR5 0 64 0 06 10 46VAR6 0 57 0 06 9 32VAR7 0 51 0 06 8 29VAR8 0 28 0 06 4 41VAR9 0 59 0 06 9 56 VAR10 0 61 0 06 9 99VAR11 0 64 0 06 10 47VAR12 0 62 0 06 10 28VAR13 0 66 0 06 10 84VAR14 0 54 0 06 8 96VAR15 0 65 0 06 11 14VAR16 0 72 0 06 12 19VAR17 0 55 0 06 9 36 PHIKSI1KSI2KSI3KSI4KSI5 KSI11 00KSI20 521 00 0 07 7 06KSI30 400 531 00 0 08 0 07 5 217 24KSI40 510 540 481 00 0 07 0 07 0 07 6 977 476 60KSI50 420 500 440 501 00 0 07 0 07 0 07 0 07 5 776 996 227 17 THETA DELTAVAR1VAR2VAR3VAR4VAR5VAR6 0 650 660 611 000 590 67 0 07 0 07 0 07 0 08 0 07 0 07 9 639 859 0213 198 8210 21VAR7VAR8VAR9VAR10VAR11VAR12 0 740 920 660 630 590 61 0 07 0 07 0 07 0 07 0 07 0 06 11 0512 709 969 468 809 46VAR13VAR14VAR15VAR16VAR17 0 570 700 570 480 69 0 07 0 07 0 06 0 06 0 06 8 7010 759 137 4910 91 GoodnessofFitStatistics拟合优度统计量DegreesofFreedom 109MinimumFitFunctionChi Square 194 57 P 0 00 NormalTheoryWeightLeastSqChi Sq 190 15 P 0 00 EstimatedNon centralityParameter NCP 81 1590PercentConfidenceIntervalforNCP 46 71 123 45 MinimumFitFunctionValue 0 56PopulationDiscrepancyFunctionValue F0 0 2390PercentConfidenceIntervalforF0 0 13 0 35 RootMeanSquareErrorofApproximation RMSEA 0 04690PercentConfidenceIntervalforRMSEA 0 035 0 057 P ValueforTestofCloseFit RMSEA 0 05 0 71ExpectedCross ValidationIndex ECVI 0 8090PercentConfidenceIntervalforECVI 0 70 0 92 ECVIforSaturatedModel 0 88ECVIforIndependenceModel 5 78 Chi SquareforIndependenceModelwith136df 1982 04IndependenceAIC 2016 04ModelAIC 278 15SaturatedAIC 306 00IndependenceCAIC 2098 63ModelCAIC 491 90SaturatedCAIC 1049 26NormedFitIndex NFI 0 90Non NormedFitIndex NNFI 0 94ParsimonyNormedFitIndex PNFI 0 72ComparativeFitIndex CFI 0 95IncrementalFitIndex IFI 0 95RelativeFitIndex RFI 0 88CriticalN CN 263 34RootMeanSquareResidual RMR 0 054StandardizedRMR 0 054GoodnessofFitIndex GFI 0 94AdjustedGoodnessofFitIndex AGFI 0 92ParsimonyGoodnessofFitIndex PGFI 0 67 ModificationIndicesforLAMBDA X修正指数KSI1KSI2KSI3KSI4KSI5 VAR1 0 060 660 092 53VAR2 0 380 530 230 11VAR3 0 720 010 031 49VAR4 0 000 030 010 03VAR57 73 9 629 231 50VAR60 01 3 291 071 50VAR70 12 0 250 122 26VAR841 35 3 6622 024 78VAR90 400 02 2 190 22VAR100 030 10 0 300 22 MaximumModificationIndexis41 35forElement 8 1 LX修正指数 该参数由固定改为自由估计 会减少的数值 CompletelyStandardizedSolutionLAMBDA XKSI1KSI2KSI3KSI4KSI5 VAR10 59 VAR20 58 VAR30 62 VAR40 05 VAR5 0 64 VAR6 0 57 VAR7 0 51 VAR8 0 28 VAR9 0 59 VAR10 0 61 VAR11 0 64 VAR12 0 62 VAR13 0 66 VAR14 0 54 VAR15 0 65VAR16 0 72VAR17 0 55 PHIKSI1KSI2KSI3KSI4KSI5 KSI11 00KSI20 521 00KSI30 400 531 00KSI40 510 540 481 00KSI50 420 500 440 501 00THETA DELTAVAR1VAR2VAR3VAR4VAR5VAR6 0 650 660 611 000 590 67VAR7VAR8VAR9VAR10VAR11VAR12 0 740 920 660 630 590 61VAR13VAR14VAR15VAR16VAR17 0 570 700 570 480 69 结果解释 Q4在A的负荷很小 LX 0 05 但在其他因子的修正指数 MI 也不高不从属 也不归属其他因子Q8在B的负荷不高 0 28 但在A的M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《谈时间》梁实秋课件
- 亲有过谏使更课件
- 护理人员生物污染预防
- 经济管理系工作总结
- 公司级安全培训频率课件
- 公司级安全培训模板课件
- 零售行业招聘年终总结
- 青年医生病历汇报
- 语言表演教学汇报
- 舌系带过短护理
- 咖啡基础培训课件
- 创伤急救(中医骨伤科学十三五教材)
- 陈德华同志先进事迹材料之一
- 抖音短视频运营一周选题表(每周选题策划)
- 高中生社会实践报告表
- 海南经济特区工伤保险若干规定
- 人体解剖学动作分析
- 某水利水电工程二期混凝土施工监理细则
- 防错原理及案例课件
- DB37-T 1997.1-2019.物业服务规范 第1部分:通则
- 小学数学西南师大四年级上册二加减法的关系和加法运算律《减法的运算性质》教学设计
评论
0/150
提交评论