




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.函数定义域的求法:1/2ny=1/x , D: x0 , (-,0) U (0,+)y=x , D: x0, 0, + ay= x , D: x0, (0, +)y=tanx, D: xk+/2 , kZy=cotx, D:xk , kZy=arcsin(或arccosx) , D: |x|1, -1, 1x|x|2n2n+12.常见的偶函数:|x| , cosx , x (n为正整数), e , e 常见的奇函数:sinx , tanx , 1/x , x , arcsinx , arctanx ,3.常见的函数周期:sinx , cosx , 其周期T=2; tanx , cotx , |sinx| , |cosx| , 其周期 T=.aX4.三个恒等式:a =x ; arcsinx + arccosx = /2 ; arctanx + arccotx = /21/nx5.常用的等价形式:当x0时, sinx x , arcsinx x , tanx x , arctan x x , (1+ x) x , e 1 x , 1-cosx (1/2)x, (1+x) -1 (1/n)xSinx xx01/xx06.极限:Lim =1 , Lim( 1+x ) = exx当x+时,以下各函数趋势于+的速度为: x , x (n0) , a (a1) , x 由慢到快xx当n时x , x (n0) , a (a1) , n! , x ba 由慢到快7.积分中值定理:若f(x)在a,b上连续,则在a,b上至少存在一个点使 f(x)dx=f()(b-a)08.微分中值定理:若函数f(x)满足条件:函数f(x)在x 的某邻域内有定义,并且在此邻域内恒有0000 f(x)f (x )或f(x)f (x ),f(x)在 x 处可导,则有f(x )=09.洛尔定理:设函数f(x)满足条件:在闭区间a,b上连续;在开区间(a,b)内可导;f(a)=f(b),则在(a,b)内至少存在一个,使f()=0f(b)-f(a) b-a10.拉格朗日中值定理:设函数f(x)满足条件:在闭区间a,b上连续;在开区间(a,b)内可导;f(a)=f(b),则在(a,b)内至少存在一个,使 = f()高数解题的四种思维第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 第三句话:在题设条件中函数f(x)在a,b上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则不管“三七二十一”先用拉格郎日中值定理处理一下再说。 第四句话:对定限或变限积分,若被积分函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 线性代数解题的八种思维第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。 第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。 第四句话:若要证明一组向量1,2,s线性无关,先考虑用定义再说。 第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 第七句话:若已知A的特征向量0,则先用定义A0=00处理一下再说。 第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。线性代数知识点1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:、和的大小无关;、某行(列)的元素乘以其它行(列)元素的代数余子式为0;、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:、主对角行列式:主对角元素的乘积;、副对角行列式:副对角元素的乘积;、上、下三角行列式():主对角元素的乘积;、和:副对角元素的乘积;、拉普拉斯展开式:、范德蒙行列式:大指标减小指标的连乘积;、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:、;、反证法;、构造齐次方程组,证明其有非零解;、利用秩,证明;、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵: 无条件恒成立;3.4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均、可逆:若,则:、;、;、;(主对角分块)、;(副对角分块)、;(拉普拉斯)、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:、只能通过初等行变换获得;、每行首个非0元素必须为1;、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)、 若,则可逆,且;、对矩阵做初等行变化,当变为时,就变成,即:;、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;、,左乘矩阵,乘的各行元素;右乘,乘的各列元素; 、对调两行或两列,符号,且,例如:;、倍乘某行或某列,符号,且,例如:;、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:、;、;、若,则;、若、可逆,则;(可逆矩阵不影响矩阵的秩)、;()、;()、;()、如果是矩阵,是矩阵,且,则:()、的列向量全部是齐次方程组解(转置运算后的结论);、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;、型如的矩阵:利用二项展开式;二项展开式:;注:、展开后有项;、组合的性质:;、利用特征值和相似对角化:7. 伴随矩阵:、伴随矩阵的秩:;、伴随矩阵的特征值:;、8. 关于矩阵秩的描述:、,中有阶子式不为0,阶子式全部为0;(两句话)、,中有阶子式全部为0;、,中有阶子式不为0;9. 线性方程组:,其中为矩阵,则:、与方程的个数相同,即方程组有个方程;、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:、对增广矩阵进行初等行变换(只能使用初等行变换);、齐次解为对应齐次方程组的解;、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:、;、(向量方程,为矩阵,个方程,个未知数)、(全部按列分块,其中);、(线性表出)、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. 、向量组的线性相关、无关有、无非零解;(齐次线性方程组)、向量的线性表出是否有解;(线性方程组)、向量组的相互线性表示是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4. ;(例15)5. 维向量线性相关的几何意义:、线性相关;、线性相关坐标成比例或共线(平行);、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;向量组能由向量组线性表示,则; 向量组能由向量组线性表示有解;向量组能由向量组等价8. 方阵可逆存在有限个初等矩阵,使;、矩阵行等价:(左乘,可逆)与同解、矩阵列等价:(右乘,可逆);、矩阵等价:(、可逆);9. 对于矩阵与:、若与行等价,则与的行秩相等;、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;、矩阵的初等变换不改变矩阵的秩;、矩阵的行秩等于列秩;10. 若,则:、的列向量组能由的列向量组线性表示,为系数矩阵;、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;、只有零解只有零解;、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为: ()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. 、对矩阵,存在,、的列向量线性无关; 、对矩阵,存在,、的行向量线性无关;14. 线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关; 5、相似矩阵和二次型1. 正交矩阵或(定义),性质:、的列向量都是单位向量,且两两正交,即;、若为正交矩阵,则也为正交阵,且;、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:; ;3. 对于普通方阵,不同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 坐月子营养饮食搭配指导试题及答案
- 2025年工业互联网平台生物识别技术在智能工厂生产质量监控中的应用报告
- 2025年广播影视行业媒体融合与短视频平台的融合发展报告
- 2025年社区心理健康服务心理健康宣传日活动创新与推广实践报告
- 2025年新能源商用车在城市物流配送新能源车辆市场竞争格局分析报告
- 2025至2030年中国海参养殖市场运行态势及行业发展前景预测报告
- 2025至2030年中国高端家具制造行业发展监测及投资战略研究报告
- 2025至2030年中国云对象存储行业市场调查研究及投资战略咨询报告
- 考点解析-吉林省公主岭市中考数学真题分类(位置与坐标)汇编同步测试试题(解析版)
- 考点解析广东省普宁市中考数学真题分类(一元一次方程)汇编定向练习试题(含答案解析版)
- 2024年个人信用报告(个人简版)样本(带水印-可编辑)
- 个人替公司代付协议
- 20CS03-1一体化预制泵站选用与安装一
- 图纸保密协议范本
- 心肺复苏术英文课件
- 关于房产权属的案外人执行异议申请书
- 文化长廊、荣誉墙施工方案(技术方案)
- (新版)职业健康综合知识竞赛题库附答案
- 更换双电源更换施工方案
- 煤化工气化工艺系统知识课件
- 创业指导师(二级)理论考试题库附答案
评论
0/150
提交评论