



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微分中值定理【教学内容】 拉格朗日中值定理【教学目的】1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义;2、能应用拉格朗日中值定理证明不等式。3、了解拉格朗日中值定理的推论1和推论2【教学重点与难点】1、拉格朗日中值定理,拉格朗日中值定理的应用2、拉格朗日中值定理证明中辅助函数的引入。3、利用导数证明不等式的技巧。【教学过程】一、背景及回顾在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。这样一来,类似于求已知曲线上点的切线问题已获完美解决。但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系搭起一座桥,这个“桥”就是微分中值定理。由此我们学习了极值点的概念、费马定理、特别是罗尔定理,我们简单回忆一下罗尔定理的内容:若函数满足下列条件: 在闭区间连续 在开区间可导 则在内至少存在一点c,使得二、新课讲解1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理,但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容:2.1拉格朗日定理 若函数满足下列条件: 在闭区间连续 在开区间可导则在开区间内至少存在一点c,使 注:a、深刻认识定理,是两个条件,而罗尔定理是三个条件。b、若加上,则即:,拉格朗日定理变为罗尔定理,换句话说罗尔定理是拉格朗日定理的特例。c、形象认识(几何意义),易知为过A、B两点的割线的斜率,为曲线上过c点的切线的斜率;若即是说割线的斜率等于切线的斜率。几何意义:若在闭区间上有一条连续的曲线,曲线上每一点都存在切线,则曲线上至少有一点,使得过点的切线平行于割线AB。它表明“一个可微函数的曲线段,必有一点的切线平行于曲线端点的弦。”2.2 拉格朗日定理的证明下面我们证明一下该定理。分析:如何来证明该定理呢?由于罗尔定理为拉格朗日定理的特例,我们考虑是否可将拉格朗日定理的证明转化到罗尔定理上来,为此需要构造一个辅助函数,使他满足罗尔定理的条件。注意罗尔定理的结果是,对应拉格朗日定理的结果是,即,实际上就是,即是说,两边积分得,注意要满足罗尔定理的三个条件,故取证明:作辅助函数,易知在闭区间连续,在开区间可导,又,根据罗尔定理,在内至少存在一点c,使得,而,于是,即,命题得证。注:a、本定理的证明提供了一个用构造函数法证明数学命题的精彩典范;同时通过巧妙地数学变换,将一般化为特殊,将复杂问题化为简单问题的论证思想,也是数学分析的重要而常用的数学思维的体现,其中构造函数中的其实就是过两点A、B两点的割线方程。b、拉格朗日中值定理的中值点c是开区间(a,b)内的某一点,而非区间内的任意点或指定一点。换言之,这个中值定理都仅“定性“地指出了中值点c的存在性,而非”定量“地指明c的具体数值。c、拉格朗日中值定理的其他表达形式:(1) (2) 2.3 拉格朗日定理的应用例1: 验证函数-在区间0,2上是否满足拉格朗日中值定理的条件,若满足,求使定理成立的的值.解:因 ,在上连续,在内可导,满足定理的条件。而由得, 注 在验证拉格朗日中值定理时,必须注意:(1)该函数是否满足定理的两个条件。(2)是否存在一点(a,b),使成立.例2 分析:此题难以下手,由此考虑到使用拉格朗日中值定理。证明:设 易知在上满足拉格朗日中值定理的条件 故, 又,有上式得: 又, 则, ,即 ,命题得证。小结:用拉格朗日中值定理证明不等式,关键是选取适当的函数,并且该函数满足中值定理的条件。便得到,再根据放大或缩小,证出不等式。推论1如果在区间内的导数恒等于零,那么在内恒等于一个常数.(证明作为课外作业)证:在区间内任意取两点,(设),则在上满足拉格朗日中值定理条件.故有,由于,所以,即.由于,是在内任意取的两点,因此在区间内函数值总是相等的,这表明在区间内恒为一个常数.推论2若有,则有.(证明作为课外作业)证:,根据推论1知,即.三、小结 1、拉格朗日定理的内容 2、拉格朗日定理的几何意义 3、拉格朗日定理的证明过程构造函数法 4、拉格朗日定理的应用微分学基本定理1、极值点的概念 定义:设函数在区间上有定义。若,且存在的某邻域,有 ()则称是函数的极大点(极小点),是函数的极大值(极小值)。2、费马定理 设函数在区间上有定义。若函数在点可导,且是函数的极值点,则 3、罗尔定理 若函数满足下列条件: 在闭区间连续 在开区间可导 则在内至少存在一点c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《鲁滨逊漂流记》生存智慧
- 亚急性心肌梗死病人的护理
- 当前医护和谐之道
- 2025关于标准个人担保贷款合同范本
- 精神病人护理个案分析
- 2025年新能源电动车整车制造技术创新报告:市场规模与增长潜力分析
- 茶香咖啡浓:2025年茶饮咖啡融合业态发展前景报告
- 氢能基础设施建设2025年成本优化与创新模式研究报告001
- 坚果与健康数据平台创新创业项目商业计划书
- 火锅店厨师长月工作总结
- 装修材料购买合同范文
- 幼儿常见传染病
- 《农产品种植技术培训》课件
- 道路危险货物运输安全标准化制度汇编
- 特殊教育机构学生出勤管理规定
- 2024年高校红十字应急救护大赛理论考试题库(含答案)
- 餐厅厨房装修改造工程施工组织设计方案
- 2024玻璃钢贮罐拆除解体施工合同
- 2024-2030年中国病理检查市场专题研究及市场前景预测评估报告
- 第3章 即时定位与地图构建技术课件讲解
- P.E.T.父母效能训练
评论
0/150
提交评论