




已阅读5页,还剩168页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章大气波动学 天气图上可见 1 气压场 高度场基本呈波状分布 2 一个纬圈上有3 6个波 波在几十个经度 尺度在106m 大尺度波动 称大气长波 Rossby波 3 准地转 准涡旋运动的特点 4 振幅 大约是101hPa 大振幅的波动 5 这种波动控制日常天气 重要波动 描述波动的波参数 波长 波速 周期 振幅 波动学的优点 1 可以利用成熟的波动学理论对天气系统形成机理 它的发生发展和移动进行研究 2 槽脊的移动 即等位相线的运动 即波的移动 槽的移速 相速 波速3 波动学把气旋 低压 反气旋 高压 系统联系起来 波动学与涡旋动力学 大气能量学讨论的对象 内容 目的相同 角度和理论不同 可以互相补充 学习中应该将它们联系起来思考 目前波动学是主流理论 e g 1气旋增强涡度增加 涡旋动力学 槽加深 波动学K 增加 能量学 e g 2槽脊东移 波动学 本章目的 用波动学理论讨论天气系统的形成 发生发展及移动的机理 通过大气运动方程进行理论探讨 存在问题 除了大尺度的天气波动外 大气中 基本方程中 还存在其他波动 四类基本波动 大气长波 声波 重力波 惯性波 没有电磁学方程 不能不包含电磁波 光波 例如 方程就包含了声波形成的机制 滤波的目的 去除次要波动的干扰 讨论主要波动 特别在数值预报中 例如 如果取时间波长为10分钟 对于时间尺度为105s的天气尺度波动来说 误差较小 而对于象声波等快波来说 误差就很大 随机的 且是累积的 如何在方程中就进行滤波 例如 声波是由于大气可压缩性引起的 假设大气是不可压的就可以滤去声波 但对天气波动影响不大 研究天气波动的机制 性质 理解天气变化的规律和机理 研究次要波动的机制和性质 滤波 所以 只要是基本方程包含的波动 都必须研究 第一节波动的基本知识 1 波动定义 振动在弹性媒介中的传播 需要二个条件 1 振动2 能够传播 质点与质点之间建立联系e g 单个单摆摆动 不能引起其它单摆摆动 但用一根线把它们的摆球连起来 则一个摆动可以传播出去 传播的是振荡的状态 振荡引起的机制 回复力 机械学中的观点 一般回复机制 传播机制 质点与质点之间的联系 波动的最大特点 周期性 时间上周期变化 空间上周期分布 有规律 重复发生 可预测 2 波动的表达 波参数 简谐波 其中 A 振幅 L 波长 相邻两个同位相点间的距离 即一个完整的波形的长度 x T 周期 质点完成一个全振动需要的时间 c 波速或相速 等位相线 等位相面的移动速度 即槽的移速 波动学中 求解天气系统移动的问题 即求解波速c的问题 k 波数 距离内波的数目 圆频率 时间内质点完成全振动的次数 一个周期 正好移动一个全波形 3 波动的数学表示 任一个波动 可以用无穷多个不同波长 不同强度的简谐波 单波 单色 叠加而形成 数学上 任一周期函数都可以用傅立叶级数展开来表达 m 0 1 2 3 波长L l m m 纬向波数目 整数 也可以用复傅立叶级数表示 如果是线性波动 则波动方程为 取波动形式解为 简谐波解1 某个简谐波最具有代表性2 每个简谐波都满足原方程 都具有相同性质解 可见振幅A常量 不随时空变化 故没有办法讨论波的强度变化 同样无法讨论频率 波数的时空变化 主要用于讨论线性波动的传播问题 非线性波动 波 波相互作用 一维波动 只随x变化 波动在x方向上传播 一维波动一维运动 一维运动 一维波动 二维波动 涡旋运动 大气长波 的斜槽结构用二维波动表达 第二节波群和波速度 振幅表示了波动强度 能量 考虑 线性波动传播 时 使用单个简谐波解 考虑波动强度变化时 应该用多个简谐波叠加 称群波或波群或波列或波包 多个简谐波迭加至少是2个 考察二个振幅相同 频率与波数相近的简谐波迭加的结果 波数为k 圆频率为 振幅为的波动 相速度与群速度 相速度是位相的传播速度 如槽脊的移速群速度是振幅 能量的移动速度 两个频率相近的简谐波迭加后的波形 波形传播的速度即为群速度 1 c与k无关 该波动的波速与波长无关 2 c与k有关 该波动的波速与波长有关 叶笃正 1949 能量频散理论 槽在传播过程中 会通过能量频散作用 在下游激发或加强一个波动 上游效应 气候遥相关现象 直接环流遥相关 2 定常波列遥相关 Hoskins 1979 PNA型遥相关 东亚北美型遥相关 Nitta 黄荣辉1987 第三节微扰动线性化方法 求解波动 从基本方程入手 如 未知量的二次及二次以上乘积项 非线性项 含有非线性项的方程 非线性方程 所以大气运动基本方程组 非线性方程组 求解困难 作线性化或者求数值解 大气中存在非线性现象如多态 突变 在某些条件下把非线性方程线性化 介绍微扰动线性化方法 基本思想 1 任一气象要素 变量 由已知基本量叠加上未知扰动量组成 即 且 微扰动 2 基本量满足原方程 3 扰动量的二次及二次以上乘积项 非线性项 可作为高阶小量忽略 得到线性方程 以线性化为例 A代表任一物理量 2 代入方程 其中 基本量满足原方程 扰动量二次以上乘积项可忽略 此时 方程形式上虽然多了几项 但由于基本量是已知的 故现在的方程是线性方程 微扰动线性化方法适用于小振幅的扰动 对于有限振幅的扰动 这时不满足 扰动量的二次以上乘积项不能作为高阶小量忽略 非线性项重要 小振幅扰动是主要是线性现象 有限 大 振幅扰动为非线性现象 可以略去表示 如阻塞形势是大振幅扰动 非线性过程 用线性过程就不能解释阻塞高压形成的机制和特征 第四节声波 方程组可以描述的波动有 声波 重力波 惯性波 大气长波 Rossby波 Kelvin波 热带 研究声波的目的 滤波 物理分析 空气块受压缩 大气可压缩性 是声波的产生机制 声波的振动 与传播方向一致 典型的纵波 与天气系统 振荡周期为几天 传播速度为10m s 与风速相当 相比 声波是高频波 如果不滤去 会引起不稳定 声波的每个物理过程 都是可以用基本方程描述的 大气方程组一定具有声波解 声波的物理模型 1 物理模型首先要突出研究对象的产生机制 声波产生的机制 过程 物理条件要保留 突出 2 去掉次要的波动 即滤波 给出的条件要能去掉其它波动 保留声波 3 尽量使问题简化 如 声波可以是三维传播的 但为了简单起见 可简化为一维问题 机制没发生变化 物理模型 假设 1 大气是可压缩的 2 大气运动仅仅局限在x轴上 由于声波是纵波 则声波只在x向传播 简化问题 且滤掉的横波 如重力波 大气长波等 如 重力波 水面波 上下振动 水平方向传播 3 不计科氏力 f 0 科氏力不是引起声波的主要作用 滤去了由科氏力产生的波 如惯性波 大气长波等 4 膨胀和压缩是绝热过程 数学模型 三个方程 三个未知量 闭合方程组 方程组包含了声波的机制 2 微扰动的线性化 1 设 且 2 代入方程 得到 且注意到 3 略去扰动量的二次乘积项即非线性项 4 求波动解 5 讨论 1 声波是线性叠加在基本气流上 一维波动 声波是双向传播的 2 波速c与k无关 是非频散波 3 声波的传播速度c 取决于物质常数 声波的传播速度取决于介质 4 5 滤波的条件 大气不可压 水平无辐散 地转近似 去掉水平向的声波 静力平衡 气压取决于气柱重量而不是压缩程度 去掉垂直向的声波 滤波的方法不是唯一的 第五节重力波 1 实际大气 没有自由面 在讨论动力过程时 经常把大气简化为均质大气 具有了自由面 在大气自由面上会产生类似于水面波的波动 重力波 自由面 密度不同流体的交界面 2 实际大气是层结流体 看作是许多密度不同的流体层组成 不同密度的流体交界面上 会产生重力波 如 稳定层结下 气块受净浮力 重力和浮力的合力 的回复力作用 作振荡 如果振动能够传播 形成波动 两种重力波 一 重力外波 物理分析 均质流体的自由表面上产生的波动 与水面波相同 以一维渠道波为例 垂直剖面图 没有扰动 水面呈水平的 流体深度H为常量 如初始时刻 给AA 向上的扰动 AA 间的压强 气柱高度 BA间 A B 间 A线向左 A 线向右的压力梯度力 A线向左运动 A 线向右运动 产生两种作用 AA 间产生辐散 自由面下降 压力减小 压力梯度力减小 但继续加速辐散 水平 压力梯度力为零 由于惯性继续辐散 产生向内的压力梯度力 辐散减弱至0 这时向内的压力剃度力最大 产生辐合 自由面上升 产生振荡 自由面上升 产生向外的压力梯度力 辐散 自由面下降 回复机制 AA 间辐散 BA间 A B 间辐合 由面上升 扰动向左右两边传播 传播的机制 水平辐合辐散 由上面分析可见 重力外波性质 双向传播 上下振荡 水平传播 垂直向横波 形成条件 自由表面的存在 静力平衡 水平辐合辐散是产生 传播的重要机制 重力外波的物理模型应包括的机制 自由面坡度变化 相应的压力梯度力 水平的辐合辐散运动 引起自由面的变化 重力外波的物理模型 均质不可压 且具有自由表面 滤去重力内部 声波 静力平衡 滤去垂直向声波 不计科氏力作用 滤去惯性波 大气长波 波动是一维的 运动限制在xz平面内 v 0 滤去水平向横波 数学模型 u w P 是闭合方程组但这里没有体现自由表面的性质 由静力平衡 水平压力梯度力与自由表面的坡度相联系 同时辐合辐散会导致自由表面高度发生变化 由连续方程描述 把连续方程对整层流体积分 即 单位时间 通过单位水平截面 高为h的空间体的东西侧面的体积净流出量 单位截面积空间体内的流体体积变化率 质量守恒 均质不可压 体积守恒 体现了水平辐合辐散对自由面高度的影响 自由表面坡度产生压力梯度力 改变大气的水平运动 由此产生的辐合辐散运动又改变自由表面的坡度 令 H Const 消去u 令形式解 要使 讨论 重力外波线性叠加在基本气流上 双向传播 如g 10m s2 H 10km时 300m s 快波 高频波 非频散波 滤波的条件 水平无辐合辐散或准地转近似 没有自由表面 两种情况 充满整个空间 刚性上边界 若不考虑重力 也可以滤去重力外波 但同时也消去了天气波动 另一种解法 不用消元 行列式法 存在非零解 一般地 求解由5 6个未知量组成的方程组时 可以 先消元 去掉2 3个未知量 再用行列式法求解 二 重力内波 重力外波 发生在自由表面 即 的不连续面 上的波动 重力内波 发生在稳定层结的层结大气中 浮力振荡发生在稳定层结的层结大气中 因为只有在稳定层结下 才能形成回复机制 使振荡传播出去形成波动 浮力振荡 在稳定层结中 当气团受到垂直扰动时 它要受到与位移相反的净浮力 回复力 作用而在平衡位置附近发生振荡 这种振荡称为浮力振荡 类比于弹性振荡 物理分析 稳定层结中 垂直向受到扰动 形成浮力振荡 通过水平的辐合辐散传播 重力内波 1大气层结 大气的基本状态 气块在上升过程中 满足 气块在上升膨胀过程中 本身的温度递减率 大气环境温度递减率 二者的大小关系体现了不同的层结状况 若 即周围温度下降得快 故气团T 周围 重力浮力 净浮力向下 稳定层结 若 净浮力为零 中性层结 从动力方面看 单位体积气团所受的净浮力注 没有受到扰动时 静力平衡 单位质量气团所受的净浮力其中 是排开周围气体的重量 是单位体积气团本身的重量 气块上升 是干绝热过程 不变 而环境在P相同时 净浮力向下 回复力作用 产生浮力振荡 2解释 上边界为刚壁 消去了重力外波 对AB间的流体而言 扰动向上 由大气的连续性知 下层周围流体辐合补充 上层流体辐散散开 对周围流体而言 上层辐合 下层辐散 下沉运动 再由同样的方式影响周围流体 再由回复力作用 一会儿上升 一会儿下沉 即形成波动 综上 稳定层结中 垂直向受到扰动 就会在与位移相反的净浮力作用下 形成浮力振荡 通过水平的辐合辐散传播 重力内波 注 在实际大气中 这样的上升运动 水汽凝结 中尺度暴雨 云呈带状 尺度在百公里范围左右 3重力内波的物理模型 假设 在连续方程中 滤去声波 课本P249包辛内斯克近似 上下边界刚性 滤去重力外波因为水平的辐合辐散必然在自由表面上产生波动 运动是一维的 f 0 不计科氏力 滤去惯性波 大气长波 准静力 干绝热过程 数学模型 注 在热力学方程中的 这是因为 干绝热过程中 通过膨胀引起气团内 变化 故重力变了 而外界的 z 也在减小 所以哪个降得快 就会影响净浮力的方向 从而产生重力内波 在热力学方程中必须考虑 对此方程进行线性化 为简化起见 是在静止的 层结大气中 略去扰动项的二次乘积项 并把 代入上面方程组 得到 对上面的第四个方程进行改写 两边求ln 得到 再对z求导 得 两边同时 并利用声波波速公式 由上下边界固定 知 下面求解上面方程组 对 1 和 3 消去 对 2 和 4 消去 对 5 和 6 消去 令形式解 代入方程 得到 4性质 机制 浮力振荡 水平辐合辐散 正负两个方向长波 频散波 波动的速度c 几十m s 中尺度波动与日常局地性暴雨联系 对应着非常强的上升运动 5 青藏高原 水平尺度在千公里 降水发生在背风面 影响大尺度天气 引起槽脊天气系统 气旋反气旋 中尺度地形 百公里 与中尺度天气对应 气流爬坡 产生垂直扰动 稳定层结 引起浮力振荡 产生得波动形为 A随z的增加而减小 类同于单摆 第六节重力惯性波一惯性波 惯性振荡 惯性 由于地球自转 产生最主要的惯性力是科氏力 质点受扰动后 在科氏力作用下 产生振荡 证 只考虑科氏力 消去u 或消去v 谐振荡 周期解 u Asinft Bcosft或v Asinft Bcosft其中 f 惯性振荡的圆频率 若有传播机制 则振荡会传播出去 传播机制 水平辐合辐散 与重力波一样 也与中尺度天气相联系 惯性波与重力波形成混合波 称为重力惯性波 以作旋转运动的一个水槽内的水 受重力和惯性离心力 为例 1 没有旋转运动 则 没有惯性力 是纯重力的作用下 单纯重力的作用 产生的垂直方向的振动 水平方向的波动 单纯科氏力的作用 产生的水平面上的振荡 垂直方向的波动 2 旋转运动很强 则 很大 相比来看重力可以不计 即在纯惯性力作用下 3 重力 惯性力共存下 自由表面呈抛物线型时才稳定 二重力惯性外波假设 静力平衡 均质不可压 是常量 有自由面 运动发生在旋转地球上 即 滤去了声波 内波 大气长波 含有重力外波 2个解 由于科氏力引起的惯性波 2个解 的解 如果为四个解 则重力外波和惯性波分开 如果为两个解 则说明重力外波与惯性波混合成为了重力惯性外波 数学模型 考虑科氏力作用下的方程 假设自由面高度h x y t 由静力平衡 趋动大气运动的力 气压梯度力 与z无关 h与z无关 所以由它们趋动的大气运动也与z无关 与z无关 即 由 均质不可压 和 质量守恒 推出 体积守恒 对上式的讨论 原方程组变为 线性化 在静止状况下发生的扰动 则方程组变为 消元可得 考虑一维波动 令 代入得 要使 这是三次方程 所以应该有3个解 定常波 实际大气中不会出现这样的波动 所以 这个解是无意义的 是由于在消元过程中使方程阶数变高了 相当于两个波动的合成 重力外波 惯性波 重力惯性外波的波速公式 气象意义 是重力外波和惯性波的混合解 由于实际大气中 重力和科氏力都存在 故重力外波与惯性波混合并存 重力惯性外波 频散波 传播机制 水平辐合辐散 故对应中尺度天气过程 是高频波 快波 对应局地 短时 强烈的天气现象 滤波的方法 水平无辐散准地转近似 至于哪种滤波效果更好 见后面第八节的详细分析 第七节大气长波 大气长波很重要 从任一张天气图上都可以看出长波的性质 大尺度波动等压线 等高线 流场 波状 高低相间 全球 北半球 天气图 最多有3 6个槽 故波长为几十个经度 为大尺度波动 称为大气长波 或Rossby波 或行星波 尺度与地球半径相当 强度 振幅 10hPa 是大振幅的波动 慢波 槽脊的传播速度或波速c 10m s 缓慢波这种波动控制日常天气 重要波动 涡旋波 主要在水平面内运动 传播 是准水平无辐散的 水平向横波 振动在南北方向 传播在东西方向 总结 大尺度波动 涡旋运动 准地转 准水平无辐散 准水平运动 慢波 控制日常天气过程 强度 大振幅 水平向横波 振动在南北方向 传播在东西方向 二假设 运动局限在水平面内 滤掉了垂直向的横波 重力波 大气均匀不可压 不考虑层结 正压大气 密度 常数滤掉了声波 重力内波 综合此二点 即假设水平无辐散 滤掉了重力惯性波 数学模型 u v P的闭合方程组 大气长波主要是涡旋运动 描述涡旋运动的最好的物理量是 而不是 水平运动 对应的 在垂直方向上 故对上面方程组作些处理 简化的涡度方程 简化的涡度方程和连续方程 线性化 即假设大气长波叠加在均匀的西风基流上 中高纬大气上空的西风气流并不均匀 存在西风急流 代入方程 得到 有旋无辐散 可以引入流函数 略去二阶小量 得到 引入流函数 并略去方程中扰动量的二次乘积项 得到 一元线性微分方程 设波动解 代入上面的一元线性微分方程中 得到 波速 群速度 三以一维的情况讨论 一维 即l 0 1 传播 波速 与重力波的 不同 大气长波单向传播 k 纬圈上的波数 是可以确定的 也可以确定 故c取决于k或L 由波静止时的 临界波数 临界波长 得到 2 波速大小 短期过程 气旋尺度在千km量级 而Rossby波的传播速度在几百km 天 天气系统几天过去 不同于重力波的c 几千km 天 几个小时此天气系统就过去了 传播特点 1 单向缓慢传播2 无基流时 纯Rossby波西退 有西风基流时 Rossby波的传播有三种情况 2 机制 的存在 是Rossby波产生的必要条件 其中 是垂直方向的相对涡度 绝对涡度守恒 由上面方程知 效应 由 的存在产生的结果 由于科氏参数f随纬度是变化的 不等于0 当系统作南北运动时 v不等于0 这时系统的牵连涡度发生变化 为保持绝对涡度守恒 系统的相对涡度也要发生相应的变化 由这种机制产生的结果 称为 效应 它是Rossby波的机制 关于Rossby波产生机制的不同说法 回复机制 初始时刻 基本西风气流下 0 现在 受到向北的扰动 由于 在的作用下 作反气旋的圆周运动 直至回到原纬度 f回到原值 但由于惯性 会继续向南 此时 作气旋式运动 再回到原纬度 受惯性继续相北 这种说法 可以解释天气图上的波状气流 但只是解释了质点的回复机制 没有给出波的传播机制 而且看到的也是叠加在基本气流上的 所以这里看到的波状 实际上还是质点的振荡 类似于前面讲的单摆在振荡 下面的纸在移动 留在纸上的波形 传播机制 利用作如下讨论 Rossby波的机制 回复机制 传播机制 中间质点受扰动 v 0 生成反气旋涡度 点涡 仅仅在一个地方有涡度 该点涡也会在周围诱导出反气旋流场 使得左边的流点受到向北的扰动 产生反气旋涡度 也诱发出流场 使两边的流点振动起来 也使得右边的流点受到向南的扰动 产生气旋涡度 也诱发出流场 使两边的流点振动起来 同时左边流点诱发的反气旋流场和右边流点诱发的流场 使中间流点产生向南的运动 这相当于给中间流点一个回复机制 产生振荡 左边流点产生脊 故脊由中间点向左边西传 右边流点产生槽 而中间点受向南的扰动产生槽 故槽也向西传 所以波动向西传播 这种说法 1 质点发生南北扰动后 受回复力作用发生振荡 2 质点诱导出的流场 使周围流点发生扰动 传播 3 从位相上看 单向西传 都是 效应的结果 Rossby波产生 传播 振荡所有机制 都是 效应 3 频散 频散波 波动的能量不随波传播 即槽脊能量传给别人 能量一定在槽的下游 槽在能量的上游 故上游槽会在下游会加强波动 原来有波动 或激发波动 原来无波动 这就是上游效应 上游效应 当时 波动的能量先于波动传到下游 会在下游加强原扰动或激发新的波动 称为上游效应 下游效应 下游波动对上游波动的影响 而实际天气过程中 Rossby波 上游效应 第八节滤波问题一 滤波的目的 基本方程 含有各种波动 性质 机制 对天气产生的影响不同 分为谐音和噪音 1 具有必要性 应用基本方程时 理论研究上 影响理解 数值预报 从基本方程出发 会含有快波 引起计算不稳定 取同样大小格距 对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安丘市2025-2026学年七年级上学期语文期中测试试卷
- 安徽省池州市石台县2024-2025学年高三上学期第一次月考语文考点及答案
- DB21-T 2567-2025 工业锅炉 效率测试技术
- 2024-2025学年河南省新乡市高新区人教PEP版(2024)三年级下册期末测试英语试卷(含答案)
- 宾馆转让合同范本
- 缠绕膜合同范本
- 社区政治基础知识培训课件
- 私人聘请员工合同范本
- 承包田亩合同范本
- 网围栏采购合同范本
- 2025至2030医学混合成像系统行业产业运行态势及投资规划深度研究报告
- 2025年云南省高校大学《辅导员》招聘考试题库及答案
- 2025年内蒙古交通集团考试笔试试题(含答案)
- 消费品市场2025年消费者对绿色包装认知及需求调研可行性研究报告
- 台球厅消防知识培训课件
- 充电桩运维服务协议
- 2025至2030中国防砸安全鞋行业运营态势与投资前景调查研究报告
- 学堂在线 高技术与现代局部战争 章节测试答案
- 2025年医疗器械仓库管理培训试题及答案
- 2024年湖南省古丈县事业单位公开招聘工作人员考试题含答案
- 水费收缴使用管理办法
评论
0/150
提交评论