Quadratic Equations.ppt_第1页
Quadratic Equations.ppt_第2页
Quadratic Equations.ppt_第3页
Quadratic Equations.ppt_第4页
Quadratic Equations.ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Solving Quadratic Equations AquadraticequationisanequationequivalenttooneoftheformWherea b andcarerealnumbersanda 0 Tosolveaquadraticequationwegetitintheformaboveandseeifitwillfactor Getformabovebysubtracting5xandadding6tobothsidestoget0onrightside 5x 6 5x 6 Factor UsetheNullFactorlawandseteachfactor 0andsolve Soifwehaveanequationinxandthehighestpoweris2 itisquadratic Inthisformwecouldhavethecasewhereb 0 Rememberstandardformforaquadraticequationis Whenthisisthecase wegetthex2aloneandthensquarerootbothsides Getx2alonebyadding6tobothsidesandthendividingbothsidesby2 6 6 2 2 Nowtakethesquarerootofbothsidesrememberingthatyoumustconsiderboththepositiveandnegativeroot Let scheck Nowtakethesquarerootofbothsidesrememberingthatyoumustconsiderboththepositiveandnegativeroot Whatifinstandardform c 0 Wecouldfactorbypullinganxoutofeachterm Factoroutthecommonx UsetheNullFactorlawandseteachfactor 0andsolve Ifyouputeitherofthesevaluesinforxintheoriginalequationyoucanseeitmakesatruestatement Whatarewegoingtodoifwehavenon zerovaluesfora bandcbutcan tfactorthelefthandside Thiswillnotfactorsowewillcompletethesquareandapplythesquarerootmethod Firstgettheconstanttermontheothersidebysubtracting3frombothsides Wearenowgoingtoaddanumbertotheleftsidesoitwillfactorintoaperfectsquare Thismeansthatitwillfactorintotwoidenticalfactors Ifweaddanumbertoonesideoftheequation weneedtoaddittotheothertokeeptheequationtrue Let sadd9 Rightnowwe llseethatitworksandthenwe lllookathowtofindit 9 9 Nowfactorthelefthandside twoidenticalfactors Thiscanbewrittenas Nowwe llgetridofthesquarebysquarerootingbothsides Rememberyouneedboththepositiveandnegativeroot Subtract3frombothsidestogetxalone Thesearetheanswersinexactform Wecanputtheminacalculatortogettwoapproximateanswers Okay sothisworkstosolvetheequationbuthowdidweknowtoadd9tobothsides 9 9 Wewantedthelefthandsidetofactorintotwoidenticalfactors WhenyouFOIL theoutertermsandtheinnertermsneedtobeidenticalandneedtoaddupto6x 3x 3x 6x Thelasttermintheoriginaltrinomialwillthenbethemiddleterm scoefficientdividedby2andsquaredsincelasttermtimeslasttermwillbe 3 3 or32 Sotocompletethesquare thenumbertoaddtobothsidesis themiddleterm scoefficientdividedby2andsquared Let ssolveanotheronebycompletingthesquare Tocompletethesquarewewantthecoefficientofthex2termtobe1 Divideeverythingby2 2 2 2 2 Sinceitdoesn tfactorgettheconstantontheothersidereadytocompletethesquare Sowhatdoweaddtobothsides 16 16 Factorthelefthandside Squarerootbothsides remember Add4tobothsidestogetxalone themiddleterm scoefficientdividedby2andsquared Bycompletingthesquareonageneralquadraticequationinstandardformwecomeupwithwhatiscalledthequadraticformula Rememberthesong Thisformulacanbeusedtosolveanyquadraticequationwhetheritfactorsornot Ifitfactors itisgenerallyeasiertofactor butthisformulawouldgiveyouthesolutionsaswell Wesolvedthisbycompletingthesquarebutlet ssolveitusingthequadraticformula 1 1 1 6 6 3 Don tmakeamistakewithorderofoperations Let sdothepowerandthemultiplyingfirst There sa2incommoninthetermsofthenumerator Thesearethesolutionswegotwhenwecompletedthesquareonthisproblem NOTE Whenusingthisformulaifyou vesimplifiedundertheradicalandendupwithanegative therearenorealsolutions Therearecomplex imaginary solutions butthatwillbedealtwithinyear12Calculus SUMMARYOFSOLVINGQUADRATICEQUATIONS Gettheequationinstandardform Ifthereisnomiddleterm b 0 thengetthex2aloneandsquarerootbothsides ifyougetanegativeunderthesquareroottherearenorealsolutions Ifthereisnoconstantterm c 0 thenfactoroutthecommonxandusethenullfactorlawtosolve seteachfactor 0 Ifa bandcarenon zero seeifyoucanfactorandusethenullfactorlawtosolve Ifitdoesn tfactororishardtofactor usethequadraticformulatosolve ifyougetanegativeunderthesquareroottherearenorealsolutions Ifwehaveaquadraticequationandareconsideringsolutionsfromtherealnumbersystem usingthequadraticformula oneofthreethingscanhappen 3 The stuff underthesquarerootcanbenegativeandwe dgetnorealsolutions The stuff underthesquarerootiscalledthediscriminant This discriminates ortellsuswhattypeofsolutionswe llhave 1 The stuff underthesquarerootcanbepositiveandwe dgettwounequalrealsolutions 2 The stuff underthesquarerootcanbezeroandwe dgetonesolution calledarepeatedord

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论