CUDA_Training_Program_Day_1_Session_1.ppt_第1页
CUDA_Training_Program_Day_1_Session_1.ppt_第2页
CUDA_Training_Program_Day_1_Session_1.ppt_第3页
CUDA_Training_Program_Day_1_Session_1.ppt_第4页
CUDA_Training_Program_Day_1_Session_1.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TrainingProgramonGPUProgrammingwithCUDA 31stJuly 7thAug 14thAug2011CUDATeachingCenter UoM TrainingProgramonGPUProgrammingwithCUDA SanathJayasenaCUDATeachingCenter UoM Day1 Session1Introduction Outline TrainingProgramDescriptionCUDATeachingCenteratUoMSubjectMatterIntroductiontoGPUComputingGPUComputingwithCUDACUDAProgrammingBasics July Aug2011 3 CUDATrainingProgram OverviewofTrainingProgram 3Sundays starting31stJulyScheduleandprogramoutlineMainresourcepersonsSanathJayasena JayathuSamarawickrama KishanWimalawarna LochandakaRanathungaDeptofComputerScience Eng DeptofElectronic Telecom Engineering ofFacultyofEngineering andFacultyofIT July Aug2011 CUDATrainingProgram 4 CUDATeachingCenter UoMwasselectedasaCTCAgroupofpeoplefrommultipleDepts July Aug2011 CUDATrainingProgram 5 GPUComputing Introduction GraphicsProcessingUnits GPUs high performancemany coreprocessorsthatcanbeusedtoaccelerateawiderangeofapplicationsGPGPU General PurposecomputationonGraphicsProcessingUnitsGPUsleadtheraceforfloating pointperformancesincestartof21stcenturyGPUsarebeingusedasparallelprocessors July Aug2011 CUDATrainingProgram 6 GPUComputing Introduction Generalcomputing untilendof20thcenturyReliedontheadvancesinhardwaretoincreasethespeedofsoftware appsSloweddownsincethenduetoPowerconsumptionissuesLimitedproductivitywithinasingleprocessorSwitchtomulti coreandmany coremodelsMultipleprocessingunits processorcores usedineachchiptoincreasetheprocessingpowerImpactonsoftwaredevelopers July Aug2011 CUDATrainingProgram 7 GPUComputing Introduction Asequentialprogramwillonlyrunononeofthecores whichwillnotbecomeanyfasterWitheachnewgenerationofprocessorsSoftwarethatwillcontinuetoenjoyperformanceimprovementwillbeparallelprogramsWhere multiplethreadsofexecutioncooperatetoachievethefunctionalityfaster July Aug2011 CUDATrainingProgram 8 CPU GPUPerformanceGap July Aug2011 CUDATrainingProgram 9 Source CUDAProg Guide4 0 CPU GPUPerformanceGap July Aug2011 CUDATrainingProgram 10 Source CUDAProg Guide4 0 GPGPU CUDA GPUdesignedasanumericcomputingengineWillnotperformwellonsometasksasCPUsMostapplicationswillusebothCPUsandGPUsCUDANVIDIA sparallelcomputingarchitectureaimedatincreasingcomputingperformancebyharnessingthepoweroftheGPUAprogrammingmodel July Aug2011 CUDATrainingProgram 11 MoreDetailsonGPUs GPUistypicallyacomputercard installedintoaPCIExpress16xslotMarketleaders NVIDIA Intel AMD ATI ExampleNVIDIAGPUs donatedtoUoM GeForceGTX480 Tesla2070 July Aug2011 12 CUDATrainingProgram ExampleSpecifications July Aug2011 13 CUDATrainingProgram CPUvs GPUArchitecture TheGPUdevotesmoretransistorsforcomputation July Aug2011 14 CUDATrainingProgram CPU GPUCommunication July Aug2011 15 CUDATrainingProgram CUDAArchitecture CUDAisNVIDA ssolutiontoaccesstheGPUCanbeseenasanextensiontoC C CUDASoftwareStack July Aug2011 16 CUDATrainingProgram CUDAArchitecture TherearetwomainpartsHost CPUpart SingleProgram SingleDataDevice GPUpart SingleProgram MultipleData July Aug2011 17 CUDATrainingProgram CUDAArchitecture GRIDArchitecture July Aug2011 18 CUDATrainingProgram TheGridAgroupofthreadsallrunningthesamekernelCanrunmultiplegridsatonce TheBlockGridscomposedofblocksEachblockisalogicalunitcontaininganumberofcoordinatingthreadsandsomeamountofsharedmemory SomeApplicationsofGPGPU ComputationalStructuralMechanics Bio InformaticsandLifeSciences ComputationalElectromagneticsandElectrodynamics ComputationalFinance July Aug2011 19 CUDATrainingProgram SomeApplications ComputationalFluidDynamics DataMining Analytics andDatabases ImagingandComputerVision MedicalImaging July Aug2011 20 CUDATrainingProgram SomeApplications MolecularDynamics NumericalAnalytics Weather Atmospheric OceanModelingandSpaceSciences July Aug2011 21 CUDATrainingProgram CUDAProgrammingBasics Accessing UsingtheCUDA GPUs YouhavebeengivenaccesstoourclusterUseraccountson192 248 8 13xItisaLinuxsystemCUDAToolkitandSDKfordevelopmentIncludesCUDAC C compilerforGPUs nvcc WillneedC C compilerforCPUcodeNVIDIAdevicedriversneededtorunprogramsForprogramstocommunicatewithhardware July Aug2011 CUDATrainingProgram 23 ExampleProgram1 global saysthefunctionistobecompiledtorunona device GPU not host CPU Anglebrackets forpassingparams argstoruntime July Aug2011 CUDATrainingProgram 24 include include global voidkernel void intmain void kernel printf HelloWorld n return0 AfunctionexecutedontheGPU device isusuallycalleda kernel ExampleProgram2 Part1 July Aug2011 CUDATrainingProgram 25 Ascanbeseeninnextslide WecanpassparameterstoakernelaswewouldwithanyCfunctionWeneedtoallocatememorytodoanythingusefulonadevice suchasreturnvaluestothehost ExampleProgram2 Part2 intmain void intc dev c cudaMalloc void July Aug2011 CUDATrainingProgram 26 ExampleProgram3 Withinhost CPU code callthekernelbyusing specifyingthegridsize numberofblocks and ortheblocksize numberofthreads moredetailslater July Aug2011 27 CUDATrainingProgram ExampleProgram3 contd July Aug2011 28 CUDATrainingProgram Note DetailsonthreadsandthreadIDswillcomelater ExampleProgram4 July Aug2011 29 CUDATrainingProgram Grids BlocksandThreads July Aug2011 30 CUDATrainingProgram Agridofsize6 3x2blocks Eachblockhas12threads 4x3 Conclusion InthissessionwediscussedIntroductiontoGPUComputingGPUComputingwithCUDACUDAProgrammingBasicsNextsessionDataParallelismCUDAProgrammingModelCUDAThreads July Aug2011 CUDATrainingProgram 31 ReferencesforthisSession C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论