y=a(x-h)2的图像和性质.doc_第1页
y=a(x-h)2的图像和性质.doc_第2页
y=a(x-h)2的图像和性质.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

221.3 二次函数的图象与性质教学内容:会画出这类函数的图象,通过比较,了解这类函数的性质教学目标:1使学生能利用描点法画出二次函数ya(xh)2的图象。 2让学生经历二次函数ya(xh)2性质探究的过程,理解其性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系。重点难点关键:重点:会用画出二次函数ya(xh)2的图象,理解其性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系。难点:理解二次函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的相互关系。关键:数形结合。教学过程: 一、复习引入 1在同一直角坐标系内,画出二次函数yx2,yx21的图象,并回答: (1)两条抛物线的位置关系。 (2)说出它们所具有的公共性质。 2二次函数y2(x1)2的图象与二次函数y2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、探究新知:1。探究新知:学生画出二次函数y2(x1)2 y2(x+1)2和y2x2的图象,并加以观察。 教师巡视、指导。分组讨论,交流合作。2学生汇报:函数y2(x1)2与y2x2的图象,开口方向、对称轴和顶点坐标;函数y2(x一1)2的图象可以看作是函数y2x2的图象怎样平移得到的。函数y2(x+1)2与y2x2的图象,开口方向、对称轴和顶点坐标;函数y2(x一1)2的图象可以看作是函数y2x2的图象怎样平移得到的。 师:由函数y2x2的性质总结函数y2(x1)2,y2(x+1)2的性质 3让学生完成以下填空: 当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大;当x_时,函数取得最_值y_。4、学生作图分析探究:在同一直角坐标系中,画出二次函数,图像,并分别指出它们的开口方向、对称轴、顶点。并分析三者的平移规律。 5、归纳: 开口方向对称轴顶点坐标向上直线x=h(h,0)向下 将y=ax2按照“左加右减”的规律平移,就可以得到的图像。 三、应用新知:例不画出图象,你能说明抛物线与之间的关系吗?解 抛物线的顶点坐标为(0,0);抛物线的顶点坐标为(-2,0)因此,抛物线与形状相同,开口方向都向下,对称轴分别是y轴和直线抛物线是由向左平移2个单位而得的四:巩固练习:1画图填空:抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线向 平移 个单位得到的2在同一直角坐标系中,画出下列函数的图象, ,并指出它们的开口方向、对称轴和顶点坐标并比较这三个函数图像的异同点。五:课堂小结:1在同一直角坐标系中,函数ya(xh)2的图象与函数yax2的图象有什么联系和区别?2你能说出函数ya(xh)2图象的性质吗?六:布置作业:1、P35 练习2、选用作业设计:A层练习:1已知函数, (1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;(3)分别讨论各个函数的性质2根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线得到抛物线和?B层练习:3函数,当x 时,函数值y随x的增大而减小当x 时,函数取得最 值,最 值y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论