一元二次方程的过关题.doc_第1页
一元二次方程的过关题.doc_第2页
一元二次方程的过关题.doc_第3页
一元二次方程的过关题.doc_第4页
一元二次方程的过关题.doc_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学组卷一元二次方程一选择题(共10小题)1已知边长为a的正方形的面积为8,则下列说法中,错误的是() A a是无理数 B a是方程x28=0的解 C a是8的算术平方根 D a满足不等式组2下列说法中,正确的是()A当x1时,有意义B方程x2+x2=0的根是x1=1,x2=2C的化简结果是Da,b,c均为实数,若ab,bc,则ac3一元二次方程x2+px2=0的一个根为2,则p的值为()A1B2C1D24若x=2是关于x的一元二次方程x2ax+a2=0的一个根,则a的值为()A1或4B1或4C1或4D1或45已知关于x的一元二次方程x2+ax+b=0有一个非零根b,则ab的值为()A1B1C0D26关于x的方程m(x+h)2+k=0(m,h,k均为常数,m0)的解是x1=3,x2=2,则方程m(x+h3)2+k=0的解是()Ax1=6,x2=1Bx1=0,x2=5Cx1=3,x2=5Dx1=6,x2=27x1、x2是一元二次方程3(x1)2=15的两个解,且x1x2,下列说法正确的是()Ax1小于1,x2大于3Bx1小于2,x2大于3Cx1,x2在1和3之间Dx1,x2都小于38关于x的一元二次方程(a1)x2+x+|a|1=0的一个根是0,则实数a的值为()A1B0C1D1或19关于x的方程(m2m2)x2+mx+1=0是一元二次方程的条件是()Am1Bm2Cm1或m2Dm1且m210满足(n2n1)n+2=1的整数n有几个()A4个B3个C2个D1个二填空题(共7小题)11已知a,b是方程x2x3=0的两个根,则代数式2a3+b2+3a211ab+5的值为_12一元二次方程(a+1)x2ax+a21=0的一个根为0,则a=_13若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=_14一元二次方程2x23x+k=0有两个不相等的实数根,则k的取值范围是_15关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称PAB中,PBy轴,ABx轴,PB与AB相交于点B若PAB的面积大于12,则关于x的方程(a1)x2x+=0的根的情况是_16若y=m2,且关于x的方程(m3)xy7=5是一元二次方程,则m的值是_17若关于x的方程(m3)x2+5x+m23m18=0的常数项为0,则m的值等于_三解答题(共13小题)18先化简,再求值:(+2x),其中x满足x24x+3=019先化简,再求值:(),其中a2+a2=020已知关于x的方程(k1)x2(k1)x+=0有两个相等的实数根,求k的值21一元二次方程mx22mx+m2=0(1)若方程有两实数根,求m的范围(2)设方程两实根为x1,x2,且|x1x2|=1,求m22已知关于x的方程mx2(m+2)x+2=0(m0)(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值23某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件假设2013年到2015年这种产品产量的年增长率相同(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?24电动自动车已成为市民日常出行的首选工具据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?25如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?26某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x(1)用含x的代数式表示第3年的可变成本为_万元(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x27已知关于x的一元二次方程(a+c)x2+2bx+(ac)=0,其中a、b、c分别为ABC三边的长(1)如果x=1是方程的根,试判断ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC的形状,并说明理由;(3)如果ABC是等边三角形,试求这个一元二次方程的根28(2014江西模拟)等腰ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D设P点运动时间为t,PCQ的面积为S(1)求出S关于t的函数关系式;(2)当点P运动几秒时,SPCQ=SABC?(3)作PEAC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论29某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?30(2014丹徒区二模)如图,在平面直角坐标系中,四边形OABC为矩形,OA=6,AB=8动点M、N分别从O、B同时出发,都以1个单位的速度运动,其中,点M沿OA向终点C运动,点N沿BC向终点C运动,过点N作NPBC,交AC于点P,连接MP,已知动点运动了x秒(1)点B的坐标是_,用含x的代数式表示点P的坐标为_;(2)设四边形OMPC的面积为S,求当S有最小值时点P的坐标;(3)试探究,当S有最小值时,在线段OC上是否存在点T,使直线MT把ONC分割成三角形和四边形两部分,且三角形的面积是ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由初中数学组卷参考答案与试题解析一选择题(共10小题)1已知边长为a的正方形的面积为8,则下列说法中,错误的是()Aa是无理数Ba是方程x28=0的解Ca是8的算术平方根Da满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组菁优网版权所有分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断解答:解:a=2,则a是无理数,a是方程x28=0的解,是8的算术平方根都正确;解不等式组,得:3a4,而23,故错误故选:D点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法2下列说法中,正确的是()A当x1时,有意义B方程x2+x2=0的根是x1=1,x2=2C的化简结果是Da,b,c均为实数,若ab,bc,则ac考点:二次根式有意义的条件;实数大小比较;分母有理化;解一元二次方程-因式分解法菁优网版权所有专题:代数综合题分析:根据二次根式有意义,被开方数大于等于0,因式分解法解一元二次方程,分母有理化以及实数的大小比较对各选项分析判断利用排除法求解解答:解:A、x1,则x10,无意义,故本选项错误;B、方程x2+x2=0的根是x1=1,x2=2,故本选项错误;C、的化简结果是,故本选项错误;D、a,b,c均为实数,若ab,bc,则ac正确,故本选项正确故选:D点评:本题考查了二次根式有意义的条件,实数的大小比较,分母有理化,以及因式分解法解一元二次方程,是基础题,熟记各概念以及解法是解题的关键3一元二次方程x2+px2=0的一个根为2,则p的值为()A1B2C1D2考点:一元二次方程的解菁优网版权所有专题:待定系数法分析:把x=2代入已知方程,列出关于p的一元一次方程,通过解该方程来求p的值解答:解:一元二次方程x2+px2=0的一个根为2,22+2p2=0,解得 p=1故选:C点评:本题考查了一元二次方程的解的定义能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根4若x=2是关于x的一元二次方程x2ax+a2=0的一个根,则a的值为()A1或4B1或4C1或4D1或4考点:一元二次方程的解菁优网版权所有专题:计算题分析:将x=2代入关于x的一元二次方程x2ax+a2=0,再解关于a的一元二次方程即可解答:解:x=2是关于x的一元二次方程x2ax+a2=0的一个根,4+5a+a2=0,(a+1)(a+4)=0,解得a1=1,a2=4,故选:B点评:本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可5已知关于x的一元二次方程x2+ax+b=0有一个非零根b,则ab的值为()A1B1C0D2考点:一元二次方程的解菁优网版权所有分析:由于关于x的一元二次方程x2+ax+b=0有一个非零根b,那么代入方程中即可得到b2ab+b=0,再将方程两边同时除以b即可求解解答:解:关于x的一元二次方程x2+ax+b=0有一个非零根b,b2ab+b=0,b0,b0,方程两边同时除以b,得ba+1=0,ab=1故选:A点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程进而解决问题6关于x的方程m(x+h)2+k=0(m,h,k均为常数,m0)的解是x1=3,x2=2,则方程m(x+h3)2+k=0的解是()Ax1=6,x2=1Bx1=0,x2=5Cx1=3,x2=5Dx1=6,x2=2考点:解一元二次方程-直接开平方法菁优网版权所有专题:计算题分析:利用直接开平方法得方程m(x+h)2+k=0的解x=h,则h=3,h+=2,再解方程m(x+h3)2+k=0得x=3h,所以x1=0,x2=5解答:解:解方程m(x+h)2+k=0(m,h,k均为常数,m0)得x=h,而关于x的方程m(x+h)2+k=0(m,h,k均为常数,m0)的解是x1=3,x2=2,所以h=3,h+=2,方程m(x+h3)2+k=0的解为x=3h,所以x1=33=0,x2=3+2=5故选:B点评:本题考查了解一元二次方程直接开平方法:形如x2=p或(nx+m)2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程如果方程化成x2=p的形式,那么可得x=;如果方程能化成(nx+m)2=p(p0)的形式,那么nx+m=7x1、x2是一元二次方程3(x1)2=15的两个解,且x1x2,下列说法正确的是()Ax1小于1,x2大于3Bx1小于2,x2大于3Cx1,x2在1和3之间Dx1,x2都小于3考点:解一元二次方程-直接开平方法;估算无理数的大小菁优网版权所有专题:计算题分析:利用直接开平方法解方程得出两根进而估计无理数的大小得出答案解答:解:x1、x2是一元二次方程3(x1)2=15的两个解,且x1x2,(x1)2=5,x1=,x1=1+3,x2=11,故选:A点评:此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键8关于x的一元二次方程(a1)x2+x+|a|1=0的一个根是0,则实数a的值为()A1B0C1D1或1考点:一元二次方程的解;一元二次方程的定义菁优网版权所有专题:常规题型分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去解答:解:把x=0代入方程得:|a|1=0,a=1,a10,a=1故选A点评:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项9关于x的方程(m2m2)x2+mx+1=0是一元二次方程的条件是()Am1Bm2Cm1或m2Dm1且m2考点:一元二次方程的定义菁优网版权所有分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)解答:解:根据一元二次方程的概念,得m2m20,即(m2)(m+1)0,m1且m2故选D点评:特别要注意一元二次方程中a0的条件,这是在做题过程中容易忽视的知识点10满足(n2n1)n+2=1的整数n有几个()A4个B3个C2个D1个考点:一元二次方程的解;零指数幂菁优网版权所有专题:计算题分析:因为1的任何次幂为1,1的偶次幂为1,非0数的0次幂为1,所以应分三种情况讨论n的值解答:解:(1)n2n1=1,解得:n=2或n=1;(2),解得:n=0;(3),解得:n=2故选A点评:本题比较复杂,解答此题时要注意1的任何次幂为1,1的偶次幂为1,非0数的0次幂为1,三种情况,不要漏解二填空题(共7小题)11已知a,b是方程x2x3=0的两个根,则代数式2a3+b2+3a211ab+5的值为23考点:因式分解的应用;一元二次方程的解;根与系数的关系菁优网版权所有专题:计算题分析:根据一元二次方程解的定义得到a2a3=0,b2b3=0,即a2=a+3,b2=b+3,则2a3+b2+3a211ab+5=2a(a+3)+b+3+3(a+3)11ab+5,整理得2a22a+17,然后再把a2=a+3代入后合并即可解答:解:a,b是方程x2x3=0的两个根,a2a3=0,b2b3=0,即a2=a+3,b2=b+3,2a3+b2+3a211ab+5=2a(a+3)+b+3+3(a+3)11ab+5=2a22a+17=2(a+3)2a+17=2a+62a+17=23故答案为:23点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题也考查了一元二次方程解的定义12一元二次方程(a+1)x2ax+a21=0的一个根为0,则a=1考点:一元二次方程的定义菁优网版权所有专题:计算题;待定系数法分析:根据一元二次方程的定义和一元二次方程的解的定义得到a+10且a21=0,然后解不等式和方程即可得到a的值解答:解:一元二次方程(a+1)x2ax+a21=0的一个根为0,a+10且a21=0,a=1故答案为:1点评:本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a0)也考查了一元二次方程的解的定义13若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=考点:根的判别式菁优网版权所有专题:计算题分析:根据判别式的意义得到=124m=0,然后解一元一次方程即可解答:解:根据题意得=124m=0,解得m=故答案为点评:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根14一元二次方程2x23x+k=0有两个不相等的实数根,则k的取值范围是k考点:根的判别式菁优网版权所有专题:计算题分析:根据判别式的意义得到=(3)242k0,然后解不等式即可解答:解:根据题意得=(3)242k0,解得k故答案为:k点评:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根15关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称PAB中,PBy轴,ABx轴,PB与AB相交于点B若PAB的面积大于12,则关于x的方程(a1)x2x+=0的根的情况是没有实数根考点:根的判别式;反比例函数的性质菁优网版权所有专题:判别式法分析:由比例函数y=的图象位于一、三象限得出a+40,A、P为该图象上的点,且关于原点成中心对称,得出2xy12,进一步得出a+46,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可解答:解:反比例函数y=的图象位于一、三象限,a+40,a4,A、P关于原点成中心对称,PBy轴,ABx轴,PAB的面积大于12,2xy12,即a+46,a2a2=(1)24(a1)=2a0,关于x的方程(a1)x2x+=0没有实数根故答案为:没有实数根点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键16若y=m2,且关于x的方程(m3)xy7=5是一元二次方程,则m的值是3考点:一元二次方程的定义菁优网版权所有分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)特别要注意a0的条件据此即可得到m30,且y7=2,即m27=0,即可求得m的值解答:解:根据题意得:m30且y7=2,即m3y7=2,y=m2,m27=2;m2=9,解得m=3点评:本题考查的是一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程17若关于x的方程(m3)x2+5x+m23m18=0的常数项为0,则m的值等于6或3考点:一元二次方程的定义菁优网版权所有分析:根据常数项的定义,先确定常数项,再让常数项等于0,解以m为未知数的方程即可解答:解:由题意知,方程(m3)x2+5x+m23m18=0的常数项为m23m18,所以m23m18=0,解得:m=6或3点评:方程中的常数项是指不含未知数的项注意本题只是说明是方程,不一定是一元二次方程三解答题(共13小题)18先化简,再求值:(+2x),其中x满足x24x+3=0考点:分式的化简求值;解一元二次方程-因式分解法菁优网版权所有分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答解答:解:原式=,解方程x24x+3=0得,(x1)(x3)=0,x1=1,x2=3当x=1时,原式无意义;当x=3时,原式=点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法在代入求值时,要使分式有意义19先化简,再求值:(),其中a2+a2=0考点:分式的化简求值;解一元二次方程-因式分解法菁优网版权所有分析:先把原分式进行化简,再求a2+a2=0的解,代入求值即可解答:解:解a2+a2=0得a1=1,a2=2,a10,a1,a=2,原式=,原式=点评:本题考查了分式的化简求值以及因式分解法求一元二次方程的解,是重点内容要熟练掌握20已知关于x的方程(k1)x2(k1)x+=0有两个相等的实数根,求k的值考点:根的判别式;一元二次方程的定义菁优网版权所有分析:根据根的判别式令=0,建立关于k的方程,解方程即可解答:解:关于x的方程(k1)x2(k1)x+=0有两个相等的实数根,=0,(k1)24(k1)=0,整理得,k23k+2=0,即(k1)(k2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2k=2点评:本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根21一元二次方程mx22mx+m2=0(1)若方程有两实数根,求m的范围(2)设方程两实根为x1,x2,且|x1x2|=1,求m考点:根的判别式;根与系数的关系菁优网版权所有专题:判别式法分析:(1)根据关于x的一元二次方程mx22mx+m2=0有两个实数根,得出m0且(2m)24m(m2)0,求出m的取值范围即可;(2)根据方程两实根为x1,x2,求出x1+x2和x1x2的值,再根据|x1x2|=1,得出(x1+x2)24x1x2=1,再把x1+x2和x1x2的值代入计算即可解答:解:(1)关于x的一元二次方程mx22mx+m2=0有两个实数根,m0且0,即(2m)24m(m2)0,解得m0,m的取值范围为m0(2)方程两实根为x1,x2,x1+x2=2,x1x2=,|x1x2|=1,(x1x2)2=1,(x1+x2)24x1x2=1,224=1,解得:m=8;经检验m=8是原方程的解点评:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当=0,方程没有实数根22已知关于x的方程mx2(m+2)x+2=0(m0)(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值考点:根的判别式菁优网版权所有专题:计算题分析:(1)先计算判别式的值得到=(m+2)24m2=(m2)2,再根据非负数的值得到0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值解答:(1)证明:m0,=(m+2)24m2=m24m+4=(m2)2,而(m2)20,即0,方程总有两个实数根;(2)解:(x1)(mx2)=0,x1=0或mx2=0,x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,正整数m的值为1或2点评:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根23某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件假设2013年到2015年这种产品产量的年增长率相同(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?考点:一元二次方程的应用菁优网版权所有专题:增长率问题分析:(1)根据提高后的产量=提高前的产量(1+增长率),设年平均增长率为x,则第一年的常量是100(1+x),第二年的产量是100(1+x)2,即可列方程求得增长率,然后再求第4年该工厂的年产量(2)2014年的产量是100(1+x)解答:解:(1)2013年到2015年这种产品产量的年增长率x,则100(1+x)2=121,解得 x1=0.1=10%,x2=2.1(舍去),答:2013年到2015年这种产品产量的年增长率10%(2)2014年这种产品的产量为:100(1+0.1)=110(万件)答:2014年这种产品的产量应达到110万件点评:考查了一元二次方程的应用,本题运用增长率(下降率)的模型解题读懂题意,找到等量关系准确的列出方程是解题的关键24电动自动车已成为市民日常出行的首选工具据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?考点:一元二次方程的应用菁优网版权所有专题:增长率问题分析:(1)设该品牌电动自行车销售量的月均增长率为x等量关系为:1月份的销售量(1+增长率)2=3月份的销售量,把相关数值代入求解即可(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案解答:解:(1)设该品牌电动自行车销售量的月均增长率为x,根据题意列方程:150(1+x)2=216,解得x1=220%(不合题意,舍去),x2=20%答:求该品牌电动自行车销售量的月均增长率20%(2)二月份的销量是:150(1+20%)=180(辆)所以该经销商1至3月共盈利:(28002300)(150+180+216)=500546=273000(元)点评:本题考主要查了一元二次方程的应用判断所求的解是否符合题意,舍去不合题意的解找到关键描述语,找到等量关系准确的列出方程是解决问题的关键25如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?考点:一元二次方程的应用菁优网版权所有专题:应用题分析:设AB的长度为x,则BC的长度为(1004x)米;然后根据矩形的面积公式列出方程解答:解:设AB的长度为x,则BC的长度为(1004x)米根据题意得 (1004x)x=400,解得 x1=20,x2=5则1004x=20或1004x=808025,x2=5舍去即AB=20,BC=20答:羊圈的边长AB,BC分别是20米、20米点评:本题考查了一元二次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解26某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x(1)用含x的代数式表示第3年的可变成本为2.6(1+x)2万元(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x考点:一元二次方程的应用菁优网版权所有专题:增长率问题分析:(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可解答:解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=2.1(不合题意,舍去)答:可变成本平均每年增长的百分率为10%点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键27已知关于x的一元二次方程(a+c)x2+2bx+(ac)=0,其中a、b、c分别为ABC三边的长(1)如果x=1是方程的根,试判断ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC的形状,并说明理由;(3)如果ABC是等边三角形,试求这个一元二次方程的根考点:一元二次方程的应用菁优网版权所有专题:代数几何综合题分析:(1)直接将x=1代入得出关于a,b的等式,进而得出a=b,即可判断ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断ABC的形状;(3)利用ABC是等边三角形,则a=b=c,进而代入方程求出即可解答:解:(1)ABC是等腰三角形;理由:x=1是方程的根,(a+c)(1)22b+(ac)=0,a+c2b+ac=0,ab=0,a=b,ABC是等腰三角形;(2)方程有两个相等的实数根,(2b)24(a+c)(ac)=0,4b24a2+4c2=0,a2=b2+c2,ABC是直角三角形;(3)当ABC是等边三角形,(a+c)x2+2bx+(ac)=0,可整理为:2ax2+2ax=0,x2+x=0,解得:x1=0,x2=1点评:此题主要考查了一元二次方程的应用以及根的判别式和勾股定理逆定理等知识,正确由已知获取等量关系是解题关键28等腰ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D设P点运动时间为t,PCQ的面积为S(1)求出S关于t的函数关系式;(2)当点P运动几秒时,SPCQ=SABC?(3)作PEAC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论考点:一元二次方程的应用;全等三角形的应用菁优网版权所有专题:几何动点问题;压轴题分析:由题可以看出P沿AB向右运动,Q沿BC向上运动,且速度都为1cm/s,S=QCPB,所以求出QC、PB与t的关系式就可得出S与t的关系,另外应注意P点的运动轨迹,它不仅在B点左侧运动,达到一定时间后会运动到右侧,所以一些问题可能会有两种可能出现的情况,这时我们应分条回答解答:解:(1)当t10秒时,P在线段AB上,此时CQ=t,PB=10t当t10秒时,P在线段AB得延长线上,此时CQ=t,PB=t10(4分)(2)SABC=(5分)当t10秒时,SPCQ=整理得t210t+100=0无解(6分)当t10秒时,SPCQ=整理得t210t100=0解得(舍去负值)(7分)当点P运动秒时,SPCQ=SABC(8分)(3)当点P、Q运动时,线段DE的长度不会改变(10分)证明:过Q作QMAC,交直线AC于点M易证APEQCM,AE=PE=CM=QM=t,四边形PEQM是平行四边形,且DE是对角线EM的一半(11分)又EM=AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论