已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十节 一 最值定理 二 介值定理 三 一致连续性 闭区间上连续函数的性质 第一章 注意 若函数在开区间上连续 结论不一定成立 一 最值定理 定理1 在闭区间上连续的函数 即 设 则 使 值和最小值 或在闭区间内有间断 在该区间上一定有最大 证明略 点 例如 无最大值和最小值 也无最大值和最小值 又如 推论 由定理1可知有 证 设 上有界 二 介值定理 定理2 零点定理 至少有一点 且 使 证明略 在闭区间上连续的函数在该区间上有界 定理3 介值定理 设 且 则对A与B之间的任一数C 一点 证 作辅助函数 则 且 故由零点定理知 至少有一点 使 即 推论 使 至少有 在闭区间上的连续函数 必取得介于最小值与最 大值之间的任何值 例1 证明方程 一个根 证 显然 又 故据零点定理 至少存在一点 使 即 说明 内必有方程的根 取 的中点 内必有方程的根 可用此法求近似根 二分法 在区间 内至少有 则 则 上连续 且恒为正 例2 设 在 对任意的 必存在一点 证 使 令 则 使 故由零点定理知 存在 即 当 时 取 或 则有 证明 内容小结 在 上有界 在 上达到最大值与最小值 在 上可取最大与最小值之间的任何值 4 当 时 必存在 使 1 任给一张面积为A的纸片 如图 证明必可将它 思考与练习 一刀剪为面积相等的两片 提示 建立坐标系如图 则面积函数 因 故由介值定理可知 2 设 证明至少存在 一点 使 提示 令 则 易证 备用题 至少有一个不超过4的 证 证明 令 且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖南衡阳珠晖区招聘社区专职工作者笔试备考题库及1套参考答案详解
- 光盘行动课程设计
- 模拟电子电路课程设计
- 课程设计基本程序
- 呕血患者并发症预防措施
- 中专激光雕刻课程设计
- 2025陕西咸阳市秦都区招聘社区专职工作人员230人备考题库含答案详解(达标题)
- 肾癌患者的心理支持与干预
- 自动电子钟课程设计手稿
- 课程设计的活动
- 六年级上册科学全册知识点(新改版苏教版)
- 大力弘扬新时代斗争精神PPT怎样弘扬新时代斗争精神PPT课件(带内容)
- 数据库应用与开发知到章节答案智慧树2023年华侨大学
- (23春)国家开放大学《政府经济学》形考任务1-4参考答案
- 河北省单招九类职业适应性测试考试试题
- 松花江水污染事件工程伦理案例分析
- 黑龙江省佳木斯市桦南县化工园区污水处理厂建设项目环评报告书
- GB/T 8570.5-2010液体无水氨的测定方法第5部分:水分卡尔·费休法
- GB/T 39337-2020综合机械化超高水材料袋式充填采煤技术要求
- GB/T 39145-2020硅片表面金属元素含量的测定电感耦合等离子体质谱法
- GB/T 15138-1994膜集成电路和混合集成电路外形尺寸
评论
0/150
提交评论