



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
同底数幂的乘法教学设计东明中学谢崇 课题:1411 同底数幂的乘法 三维 目标知识与技能理解同底数幂的乘法法则。过程与方法1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力。2.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律。情感态度与价值观体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神。教学重点:正确理解同底数幂的乘法法则教学难点:正确理解和应用同底数幂的乘法法则教学方法与手段:透思探究教学法教学过程:一提出问题,创设情境 1. 复习an的意义: an表示n个a相乘,我们把这种运算叫做乘方乘方的结果叫幂;a叫做底数,n是指数(出示投影片)2. 25表示什么? 1010101010 可以写成什么形式? 3. 提出问题: (出示投影片) 问题:一种电子计算机每秒可进行1015次运算,它工作103秒可进行多少次运算? 师能否用我们学过的知识来解决这个问题呢? 生运算次数=运算速度工作时间 所以计算机工作103秒可进行的运算次数为:1015103 师1015103如何计算呢? 生根据乘方的意义可知 1015103=(101010)=1018师很好,通过观察大家可以发现1015、103这两个因数是同底数幂的形式,所以我们把像1015103的运算叫做同底数幂的乘法根据实际需要,我们有必要研究和学习这样的运算同底数幂的乘法 二导入新课 1做一做 出示投影片: 计算下列各式: (1)105102 (2)2322 (3)a3a2 你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述 师根据乘方的意义,同学们可以独立解决上述问题 生(1)105102=(1010101010)(1010) =107=105+2因为23表示3个2相乘,;22表示2个2相乘,根据乘方的意义,同样道理可得2322=(222)(22)=25 a3a2=(aaa)(aa)=a5=a3+2 (让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述) 生我们可以发现下列规律: (一)这三个式子都是底数相同的幂相乘 (二)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和 2议一议 aman等于什么(m、n都是正整数)?为什么?x k b 1 .c o m 出示投影片师生共析 aman表示同底数幂的乘法根据幂的意义可得: aman=am+n 于是有aman=am+n(m、n都是正整数),用语言来描述此法则即为: “同底数幂相乘,底数不变,指数相加”师请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则 生am表示m个a相乘,an表示n个a相乘,aman表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得aman=am+n师也就是说同底数幂相乘,底数不变,指数相加3.想一想 师接下来我们来计算amanap后,能找到什么规律?与同伴交流一下解题方法 解法:amanap=am+n+p 那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加 4例题讲解出示投影片 例1计算: (1)x2x5 (2)aa6 (3)(-2)(-2)4(-2)3 (4)xmx3m+1 师我们先来看例1,是不是可以用同底数幂的乘法法则呢? 生可以直接用“同底数幂相乘,底数不变,指数相加”的法则 生板演: (1)解:x2x5=x2+5=x7 (2)解:aa6=a1a6=a1+6=a7 (3)解:(-2)(-2)4(-2)3=(-2)1+4+3=(-2)8=256 (4)解:xmx3m+1=xm+(3m+1)=x4m+1 三随堂练习课本P96练习 思考:(1) xnxn+1 (2) ( x+y)3(x+y)4练习一1.计算:(抢答)(1)105106(2)a7a3 (3)x5x5(4)b5b2. 计算:(1)x10x (2)10102104(3)x5xx3 (4)yny2n+1y练习二1. 下面的计算对不对?如果不对,怎样改正?(1)b5b5 = 2 b5 ( ) (2)b5 + b5 = b10 ( ) (3) x5x5 = x25 ( ) (4)y5 y5 = 2y10 ( )(5)c c3 = c3 ( ) (6)m + m3 = m4 ( ) 2.判断(1)(x+y)3 (x+y)5= (x+y)8() (2)(x-y)2 (y-x)2 (x-y)4 ()3.若a =9 , a=81 则 a+ =( )练习三1.填空:(1)x5 ( )=x 8 (2)a ( )=a6(3)x x3( )= x7 (4)xm ( )x3m2.填空:(1) 8 =2x ,则 x = ;(2) 8 4 = 2x,则 x = ;(3) 3279 = 3x,则 x = .四、教师小结: 这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?在探索同底数幂乘法的性质时,进一步体会了幂的意义了解了同底数幂乘法的运算性质同底数幂的乘法的运算性质是底数不变,指数相加应用这个性质时,应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即aman=am+n(m、n是正整数)五、布置作业一、计算:(1)105106 (2) xnxn+1 (3)5m5n(4)y3mym+1y(5) (x+y)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业互联网平台边缘计算硬件架构分布式架构设计优化报告
- 影视行业2025年工业化制作流程优化与品质控制新策略报告
- 内能 2025-2026学年人教版(2024)物理九年级全一册
- 营养代谢治疗在提高肿瘤手术患者术后恢复中的作用
- 学校财务风险整改报告范文
- 模具数字化设计与仿真在2025年轨道交通制动盘制造中的应用与实践报告
- 银行运营主管工作成效总结范文
- 业财融合背景下高校预算管理路径
- 2025年初入会计行业面试攻略及模拟题答案解析
- 2025年初级心理咨询师考试模拟题集和答案详解
- 子宫多发性平滑肌瘤的个案护理
- 要素式强制执行申请书(申请执行用)
- 慢性根尖周炎病例汇报
- 2025年秋数学(新)人教版三年级上课件:第1课时 几分之一
- 公司项目谋划管理办法
- 2025年职业指导师考试试卷:职业指导师专业能力
- 小学英语人教版四年级下册 巩固强化练(含答案)
- 2025-2026学年粤教粤科版(2024)小学科学二年级上册(全册)教学设计(附目录)
- 2025年山东高考历史试卷真题讲评及备考策略指导(课件)
- 供养中心考试题及答案
- 2025年云南省中考英语试卷真题(含标准答案及解析)
评论
0/150
提交评论