



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初一数学知识点无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数 数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。 数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。 所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。 理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。 实数(real munber)分为有理数和无理数(irrational number)。 无理数与有理数的区别: 1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数, 比如4=4.0, 4/5=0.8, 1/3=0.33333而无理数只能写成无限不循环小数, 比如2=1.414213562根据这一点,人们把无理数定义为无限不循环小数. 2、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。 利用有理数和无理数的主要区别,可以证明2是无理数。 证明:假设2不是无理数,而是有理数。 既然2是有理数,它必然可以写成两个整数之比的形式: 实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括无限循环小数、有限小数、整数 自然数(natural number) 用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,所表示的数 。自然数由0开始 , 一个接一个,组成一个无穷集合。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。 序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义。 自然数集N是指满足以下条件的集合:N中有一个元素,记作1。N中每一个元素都能在 N 中找到一个元素作为它的后继者。 1是0的后继者。0不是任何元素的后继者。 不同元素有不同的后继者。(归纳公理)N的任一子集M,如果1M,并且只要x在M中就能推出x的后继者也在M中,那么MN。 基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集x,y,a,b等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。 自然数在日常生活中起了很大的作用,人们广泛使用自然数。 “0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。目前关于这个问题尚无一致意见。不过,在数论中,多采用前者;在集合论中,则多采用后者。目前,我国中小学教材将0归为自然数! 自然数是整数,但整数不全是自然数。 例如:-1 -2 -3.是整数 而不是自然数 全体非负整数组成的集合称为非负整数集(即自然数集) 所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字 1 不该称为质数)著名的高斯唯一分解定理说,任何一个整数。可以写成一串质数相乘的积。初一数学概念 实数: 有理数与无理数统称为实数。 有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。 自然数: 表示物体的个数0、1、2、3、4(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。 相反数: 符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。 绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。 数学定理公式 有理数的运算法则 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 减法法则:减去一个数,等于加上这个数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外墙防水保修合同书
- 时间主题的课件
- 企业信用评级与授信咨询服务协议
- 产品推广代理合同协议
- 过春节的活动作文(8篇)
- 早期教育概论课件
- 《新编商务应用文写作》第一章 习题参考答案
- 水孩子读后感250字(9篇)
- 早教分离焦虑课件
- 2025年瑞典语等级考试B1试卷:2025秋季学期词汇拓展
- 2025年三类人员安全员C证继续教育题库带参考答案
- 蝴蝶的色彩课件
- 2025年秋季新学期教学工作会议上校长讲话:扎根课堂、走近学生、做实教学-每一节课都值得全力以赴
- 2025年度船舶抵押贷款合同范本:航运融资与风险规避手册
- 2025年《药品管理法》试题(附答案)
- 2025年新人教版小升初分班考试数学试卷
- 2025劳动合同范本【模板下载】
- 以课程标准为导向:上海市初中信息科技教学设计的探索与实践
- 2025年公共基础知识考试试题(附完整答案)
- 特种设备突发事件应急处置技术指南 第5部分:起重机械-地方标准
- 北川羌族自治县农业农村局北川羌族自治县测雨雷达建设项目环评报告
评论
0/150
提交评论