函数定义域研究论文.doc_第1页
函数定义域研究论文.doc_第2页
函数定义域研究论文.doc_第3页
函数定义域研究论文.doc_第4页
函数定义域研究论文.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数定义域研究论文 函数定义域研究论文,函数的定义域是构成函数的两大要素之一,函数的定义域(或变量的允许值范围)似乎是非常简单的,然而在解决问题中不加以注意,常常会使人误入歧途。 函数定义域研究论文【1】 摘要:函数作为高中数学的主线,贯穿于整个高中数学的始终。在解函数题中强调定义域对解题结论的作用与影响,对提高学生的数学思维品质是十分有益的。 关键词:定义域;误入歧途;作用与影响;思维品质 一、函数关系式与定义域 函数关系式包括定义域和对应法则,所以在求函数的关系式时必须要考虑所求函数关系式的定义域,否则所求函数关系式可能是错误。如: 例1:某单位计划建筑一矩形围墙,现有材料可筑墙的总长度为100m,求矩形的面积S与矩形长x的函数关系式? 解:设矩形的长为x米,则宽为(50-x)米,由题意得: 故函数关系式为:. 如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量x的范围。也就说学生的解题思路不够严密。因为当自变量x取负数或不小于50的数时,S的值是负数,即矩形的面积为负数,这与实际问题相矛盾,所以还应补上自变量x的范围: 即:函数关系式为:() 这个例子说明,在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性。 二、函数最值与定义域 函数的最值是指函数在给定的定义域区间上能否取到最大(小)值的问题。如果不注意定义域,将会导致最值的错误。如: 例2:求函数在-2,5上的最值. 解: 当x=1时, 初看结论,本题似乎没有最大值,只有最小值。产生这种错误的根源在于学生是按照求二次函数最值的思路,而没有注意到已知条件发生变化。这是思维呆板性的一种表现,也说明学生思维缺乏灵活性。 其实以上结论只是对二次函数在R上适用,而在指定的定义域区间上,它的最值应分如下情况: 当时,在上最值情况是: .即最大值是中最大的一个值。 故本题还要继续做下去: 函数在-2,5上的最小值是-4,最大值是12. 这个例子说明,在函数定义域受到限制时,若能注意定义域的取值范围对函数最值的影响,并在解题过程中加以注意,便体现出学生思维的灵活性。 三、函数值域与定义域 函数的值域是该函数全体函数值的集合,当定义域和对应法则确定,函数值也随之而定。因此在求函数值域时,应注意函数定义域。如: 例3:求函数的值域. 错解:令 故所求的函数值域是. 剖析:经换元后,应有,而函数在0,+)上是增函数, 所以当t=0时,ymin=1. 故所求的函数值域是1,+). 以上例子说明,变量的允许值范围是何等的重要,若能发现变量隐含的取值范围,精细地检查解题思维的过程,就可以避免以上错误结果的产生。也就是说,学生若能在解好题目后,检验已经得到的结果,善于找出和改正自己的错误,善于精细地检查思维过程,便体现出良好的思维批判性。 四、函数单调性与定义域 函数单调性是指函数在给定的定义域区间上函数自变量增加时,函数值随着增减的情况,所以讨论函数单调性必须在给定的定义域区间上进行。如: 例4:指出函数的单调区间. 解:先求定义域: 函数定义域为. 令,知在上时,u为减函数, 在上时,u为增函数。 又. 函数在上是减函数,在上是增函数。 即函数的单调递增区间,单调递减区间是。 如果在做题时,没有在定义域的两个区间上分别考虑函数的单调性,就说明学生对函数单调性的概念一知半解,没有理解,在做练习或作业时,只是对题型,套公式,而不去领会解题方法的实质,也说明学生的思维缺乏深刻性。 五、函数奇偶性与定义域 判断函数的奇偶性,应先考虑该函数的定义域区间是否关于坐标原点成中心对称,如果定义域区间是关于坐标原点不成中心对称,则函数就无奇偶性可谈。否则要用奇偶性定义加以判断。如: 例5:判断函数的奇偶性. 解: 定义域区间-1,3关于坐标原点不对称 函数是非奇非偶函数. 若学生像以上这样的过程解完这道题目,就很好地体现出学生解题思维的敏捷性 如果学生不注意函数定义域,那么判断函数的奇偶性得出如下错误结论: 函数是奇函数. 错误剖析:因为以上做法是没有判断该函数的定义域区间是否关于原点成中心对称的前提下直接加以判断所造成,这是学生极易忽视的步骤,也是造成结论错误的原因。 综上所述,在求解函数函数关系式、最值(值域)、单调性、奇偶性等问题中,若能精细地检查思维过程,思辨函数定义域有无改变(指对定义域为R来说),对解题结果有无影响,就能提高学生质疑辨析能力,有利于培养学生的思维品质,从而不断提高学生思维能力,进而有利于培养学生思维的创造性。 函数定义域的类型与求法【2】 导读:函数的定义域是函数三要素之关键。函数的定义域(使函数解析式有意义的自变量的取值范围)似乎是非常简单的。解析式,浅谈函数定义域的类型与求法。关键词:解析式,定义域函数作为高中数学的主线,贯穿于整个高中数学的始终。函数的定义域是函数三要素之关键,特别是函数性质必须从定义域出发,它在解 决和研究函数最值、奇偶性、周期、方程、不等式等问题中起着十分重要的作用。函数的定义域(使函数解析式有意义的自变量的取值范围)似乎是非常简单的,然而在解决问题中不加以注意,常常会使人误入歧途。大全,解析式。 本文介绍求函数定义域的类型和求法,目的在于使学生全面认识定义域,深刻理解定义域,正确求函数的定义域,在解函数题中强调定义域对解题结论的作用与影响,树立起“定义域优先”的观点,对提高学生的数学思维的培养是十分有益的。 一、一般型 即给出函数的解析式求定义域,其解法的一般原则是: 如果为整式,其定义域为R; 如果为分式,其定义域是使分母不为0的实数集合; 如果是二次根式(偶次根式),其定义域是使根号内的式子不小于0的实数集合; 如果是基本初等函数(如指数函数、对数函数、三角函数、无理函数等),掌握其函数定义域。 如果是由以上几个部分的数学式子构成的,其定义域是使各部分式子都有意义的实数集合; f(x)=x0的定义域是; 例1:y=lg(6-x2) 解:要使函数有意义,则必须满足 x+50x-5 6-x20- 6-x21x 解得- 二、实际问题型 函数的解析式包括定义域和对应法则,所以在求函数的解析式时必须要考虑所求函数解析式的定义域,还要考虑实际问题中定义域受到实际意义的制约,否则所求函数关系式可能是错误。如: 例2:将一个底面圆的直径为d的圆柱截成横截面为长方形的棱柱,若这个长方形截面的一条边长为x,对角线为d,截面的面积为A,求面积A以x为自变量的函数关系式? 解:设截面的一条边长为x,对角线为d,另一条边为,由题意得: S=x 故函数解析式为:S=x 如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量的范围。也就说学生的解题思路不够严密。因为当自变量取负数或取不小于d的数时,S的值即截面的面积A为负数或被开方数为负数无意义,这与实际问题相矛盾,所以还应补上自变量的范围: 即:函数关系式为:S=x() 这个例子说明,在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性。 三抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况 (1)已知的定义域,求的定义域。 其解法是:已知的定义域是a,b求的定义域是解,即为所求的定义域。 例3已知的定义域为-2,2,求的定义域。 解:令, 得,即, 因此,从而, 故函数的定义域是 (2)已知的定义域,求f(x)的定义域。 其解法是:已知的定义域是a,b,求f(x)定义域的方法是:由,求g(x)的值域,即所求f(x)的定义域。大全,解析式。 例4已知的定义域为1,2,求f(x)的定义域。 解:1x2, 22x4 32x+15 故函数f(x)的定义域是 评述:例3和例4是互为逆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论