




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初等数论试卷一、 单项选择题:(1分/题20题=20分)设为实数,为的整数部分,则();下列命题中不正确的是()整数的公因数中最大的称为最大公因数;整数的公倍数中最小的称为最小公倍数整数与它的绝对值有相同的倍数整数与它的绝对值有相同的约数设二元一次不定方程(其中是整数,且不全为零)有一整数解,则此方程的一切解可表为()下列各组数中不构成勾股数的是(),;,;,;,下列推导中不正确的是()模的一个简化剩余系是() 的充分必要条件是() 设,同余式的所有解为()或或或无解9、设f(x)=其中为f(x)的一个解,则:( )ABC D10则同余式:( )A有时大于p但不大于n; B可超过pC等于p D等于n 11若2为模p的平方剩余,则p只能为下列质数中的 :( )A3 B11 C13 D23 12若雅可比符号,则 ( )AB;C;D13( ) A 4 B 3 C 2 D 114 模12的所有可能的指数为;( ) A1,2,4 B1,2,4,6,12 C1,2,3,4,6,12 D无法确定15 若模m的单根存在,下列数中,m可能等于: ( ) A 2 B 3 C 4 D 12 16对于模5,下列式子成立的是: ( ) A B C D 17下列函数中不是可乘函数的是: ( ) A茂陛鸟斯(mobius)函数w(a) ;B 欧拉函数;C不超过x的质数的个数;D除数函数;18 若对模的指数是,0,0,则对模的指数是( )A B C D无法确定19,均为可乘函数,则( )A为可乘函数; B为可乘函数C为可乘函数; D为可乘函数20设为茂陛乌斯函数,则有( )不成立A B C D二填空题:(每小题1分,共10分)21 3在45中的最高次n _;22 多元一次不定方程:,其中 , ,N均为整数,有整数解的充分必要条件是_;23有理数,能表成纯循环小数的充分必要条件是_;24 设为一次同余式,的一个解,则它的所有解为_;25 威尔生(wilson)定理:_;26 勒让德符号=_;27 若,则是模的平方剩余的充分必要条件是_(欧拉判别条件);28 在模的简化剩余系中,原根的个数是_;29 设,为模的一个原根,则模的一个原根为_;30 _。三简答题:(5分题4题20分)31命题“任意奇数的平方减1是8的倍数”对吗?说明理由。32“若,通过模的简化剩余系,则也通过模的简化剩余系”这命题是否正确?正确请证明,不正确请举反例。33求模17的简化剩余系中平方剩余与平方非剩余。34设为的标准分解式,记为的正因数的和,为的正因数的个数,则? ? 为什么?四计算题。(7分题4题28分)35 求不定方程6x+93y=75的一切整数解。36 解同余方程组37解同余式11(mod125)38求模13的所有原根。五、证明题:(7分/题2题=14分)39、试证: ,(x,y)=1 y是偶数的整数解可写成: 这里,并且一为奇数,一为偶数。40、设a为正整数,试证: 其中表示展布在a的一切正因数上的和式。六、应用题:(8分)41、求30!中末尾0的个数。参考答案:一单项选择:ABCDD;DACCB;DCAAD;BCBAB。 二填空题:2121;22;23;24;25!+1为素数;261;27;28;29与中的单数;3016三简答题:31答:命题正确。 而必为2的倍数。86页32正确证明见教材。33在摸的简化剩余系中与同余的数是数的平方剩余,故1,2,4,8,9,13,15,16为摸17的平方剩余,而3,5,6,7,10,11,12,14为摸17的平方非剩余。34 证明:若为可乘函数,则 分别令,它们为可乘函数,即得出。四计算题35解:因为,故原不定方程有解。 又原方程即 ,而易见方程有解 。所以原方程的一个解是所以,原方程的一切整数解是:( ) t是整数36解:因为模5,6,7两两互质,由孙子定理得所给同余方程组关于模567210有唯一解,分别解同余方程:,得, ,因此所给同余方程组的解是:即:37解:从同余方程, , , 是 得即 是所给方程的一个解,于是所解为: 解毕。38解: 为其质因数 ,故g为模13的原根的主要条件是: , 用 g=1,2,12逐一验证,得:2,6,7,11为模13的原根, 因为,故模13原根只有4个,即为所求。五、证明题:39证明:易验证所给的解为原方程的解,因y为偶数,原方程可化为: 但 而x,z=1,所以(,)=1 由书中引理,我们可假设 =, =b 显然b, (,b)=1, 于是 X=b, z=+ ,y=2 因子为奇数,所以,b一定是一为奇,一为偶,证毕40证明:假定 ,-, 为的所有正约数,那末 ,-,也是的所有正约数,于是 = 再因为在的完全剩余系中任一数的最大公约数 必定是 ,-, 中某一个数,而完全剩余系中与的最 大公约数为的数有 ,所以: = m 证毕六应用题:41解:5在30!中的最高次幂=+ =6+1+0=7 2在30!的最高次幂=+ =15+7+3+1+0=26 10=25,故 30!的末尾有7个零。2007年4月广东省高等教教育育自学考试初等数论试卷一、 单项选择题。(本大题共15小题,每小题2分,共30分)1-36,420,48三个数的公因数是( )A1,3,4,5,6,12 B. 1,2,3,4,6,12C. 2,3,4,6 D1,2,3,4,5,6,122.设a,b(整数集),p是素数,且。则( )A a,b中恰有一个是p的倍数 B.a,b中没有p的倍数C.a,b中必有一个是p 的倍数 D. a,b都是p的倍数3.设a,b是非零整数,d=(a,b),则下列成立的是( )A B. C. D. 4. 则对于任意(正整数集)( )A. B. C. D. 5.对任意实数,必有( )A. B. C. D. 6.下列不定方程中,有整数解的是( )A. B. C. D. 7.设a,b则( )A.(a,b)=(a,m) B.(a,b)=(b,m)C.(a,m)=(m,b) D.(a-b,m)=(a,m)8.下列集合中,是模15的简化剩余系的是( )A. B. C. D. 9.下列同余式中成立的是( )A. B. C. D. 10.设同余式有解,则下述断语中正确的是( )A. 该同余式有模m的m-1个解B. 在模m的一组完全剩余系中,有(b,m)个数满足该同余式C. 在模m的一组完全剩余系中,有(a,m)个数满足该同余式D. 在模m的一组完全剩余系中,有(ab,m)个数满足该同余式11.设素数p2,a,b分别是模p的平方剩余和平方非剩余,则下列成的是( )A.ab是模p的平方非剩余 B.是模p的平方非剩余C是模p的平方剩余 D. 是模p的平方非剩余12.设对模m的指数为k.,则( ) A. B. C. D, 13.若模m的原根存在,则m可能是( )A.15的倍数 B.16的倍数B.81的2倍 D.42的倍数14.若x对模m的指数是ab,a0,b0,则对模m的指数是( )A. B.bC. D.a15.设g 是模m的一个原根, .K是模c的一个非负完全剩余系,则L= 是( )A.模m的一个完全剩余系 B模m的一个简化全剩余系C模c的一个完全剩余系 D模c的一个简化全剩余系二. 填空题(本大题共10,每小题2分,共2分)16.设,= 17.若a,b,是两个整数,b0,设,则用m,r表达的b除a的带余式是 .18. 的标准分解中7的指数为 .19.有理数能表示成纯循环小数的充分必要条件是 .20.设,是m的互不相同的素数,则 .21.设a,b,c,m都是整数,则当 时, .22.设,为互异的奇素数(i=1,2.,k), ,则同余式有解时,解数为 .23.设m是偶数,则模m有原根的充分必要条件是 .24.设a对模m的指数为t,则成立的充分必要条件是 .25若是与m互素的t个整数,则 三、计算题。(本大题共4题,第26,27小题各5分,第28,29小题各7分,共24分)26解不定方程27.求3对模52的指数.28.解同余方程组29对哪些奇素p,3是模p的二次剩余?四、应用题(本题10分)30今天是星期三,试求经过天后是星期几?五、证明题(本大题共2题,每小题8分,共30分)31求证3是模17的原根.32.已知383是素数,求证。2007年4月广东省高等教教育育自学考试初等数论试题答案及评分参考一、 单项选择题15BCDAB 610ACDBC1115ADCDB二、填空题16. 17.18.1219.使得。20或21(a,m)=122. 23.m=2,4或,其中为正整数,p 为素数2425三、计算题26解:(123,57)=,所以方程有整数解。化简方程得 . (1分)解得 于是 故 知方程有特解 (3分) 一般解为()(5分)27、解:,24的正因数为1,2,3,4,6,8,12,24 (2分)依次检验: (4分)故3对模52的指数是6 (5分)28、 解: 而 (3分) 故此同余组的解为 (7分)29、解:显然,由二次互反律,有 (1分) 由于 (3分)所以 或 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业科技公司员工保密合同
- 简易手机抵押合同范本5篇
- 购销合同轮胎3篇
- 安全施工现场培训课件
- 瓶子里的小昆虫课件
- 理财培训课件
- 电力工程采购方案(3篇)
- 安全文明施工培训感想
- 贵港港平南港区长岐塘作业区罗洪码头提档升级工程环评报告
- 环卫作业管理知识培训课件
- 2025年中国电信招聘考试行政职业能力测试预测题集
- 静脉治疗知识培训课件
- 学风建设科研诚信宣教课件
- 江西省宜春市2025年上半年事业单位公开遴选试题含答案分析
- 2025繁轩科技发展(天津)有限公司公开招聘工作人员35人备考题库及答案解析
- 2025年度水电项目工程结算与审计服务协议
- 德育副校长在新学期德育工作部署会讲话范文
- (2025年标准)学生玩耍纠纷协议书
- 南昌二中初一数学试卷
- 2025-2026秋季学年第一学期学生国旗下演讲稿(20周):第五周 76载荣光里我们茁壮成长-喜迎国庆
- 2025金融消费权益保护知识竞赛题库(+答案)
评论
0/150
提交评论