




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河 北 科 技 大 学毕业设计(论文)外文资料翻译学 院: 机械电子工程学院 专 业: 机械设计制造及其自动化 姓 名: 脱 百 万 学 号: 030501227 外文出处: Computer Methods in Applied Mechanics and Engineering Volume 195, Issues 41-43, 附 件: 1.外文资料翻译译文;2.外文原文。指导教师评语:本外文资料翻译基本通顺,字数和格式符合要求。 签名: 2007年 月 日附件1:外文资料翻译译文减少偏离齿轮传动装载和卸载时的噪音Faydor L. Litvina, Daniele Vecchiatoa, Kenji Yukishimaa, Alfonso Fuentesb, Ignacio Gonzalez-Perezb and Kenichi Hayasakac芝加哥伊利诺州大学机械部门和工业工程齿轮研究中心,842 W. IL 60607-7022, 泰勒圣,芝加哥, 美国喀他赫纳工艺综合大学机械工程部博士,Murcia,30202,喀他赫纳,西班牙山叶电动机股份有限公司齿轮半径研究发展中心,2500 Shingai, Iwata, 静冈 438-8501, 日本2005 年二月 22 日定为标准;2005 年五月 6 日校订了;2005 年五月 17 日被公认;2006 年一月 25 日可在线应用.摘要齿轮传动时产生震动和噪音的主要原因是传输误差。有关影响噪音传输误差的两个主要函数已被查明:(1)一个是线性的对应误差;(2)一个是初步设计使用传输误差以减少噪音而引起的。它显示了传输误差的线性关系,在一个周期内形成了混合的循环啮合:(1)如点对点接触;(2)当从表面以曲线形式移动到起始点时就产生啮合。使用初步设计传输误差能够减少因为线性对应函数而引起的传输误差,减少噪音和避免移动接触。引起传输误差的负载函数已被研究。齿牙的损坏能够使在装载的齿轮传动中减少最大的传输误差。用计算机处理的模拟齿轮啮合,且齿轮传动装载和卸货技术已发展相当水平。关键字:齿轮传动;传输误差;齿牙啮合分析(YCA);限定的元素分析;噪音的减少。文章概要1. 绪论2. 齿牙表面的修正2.1. 螺旋状的齿轮传动2.2. 螺旋状的斜齿轮2.3. 圆柱形的蜗杆齿轮传动3. 啮合的类型和基本功能的传输误差4. 装载齿轮驱动的传动误差4.1. 初步的考虑4.2. 装载的齿轮传动果断的运行应用限定的元素分析是为了传输误差的函数5. 数字例证6. 噪音的两个传输误差函数的有力对比6.1. 应用方式概念上的考虑6.2. 线性函数的分段插补7.结论致谢参考文献1. 绪论模拟的齿轮传动啮合执行应用齿牙接触分析(TCA)和测试齿轮传动已被证实传输误差的主要原因是齿轮箱的震动,这样的震动引起齿轮传动的噪音1,2,3,4,5,6,7,10和11。传输误差函数的类型依赖对应错误的类型且齿轮齿牙表面为了进一步的传动在进行改善。(见第二节)为减少噪音而依下列的计划进行:(1) 牙齿接触表面被局部化(2) 提供一个传输误差的函数。这种传输错误是由未对准的一次函数所引起的7。(3) 对双层表面之一进行最高倍数的修正。见第2节这通常是避免表面摩擦。见第5节已经对装载和卸载齿轮传动应用TCA进行了比较,它显示装载的齿轮传动的传输误差较少。其发展的方式与数字进行一起举例。见第5节2. 齿牙表面的修正减少齿轮传动的噪音需要修正接触的双表面之一。要修正齿轮传动接触表面有三种类型:螺旋状的齿轮,螺旋状的斜齿轮,蜗杆齿轮。2.1 螺旋状的齿轮传动螺旋状的齿轮最高剖面可能相交而表面产生两个齿条刀形成错误的轮廓5和7。完美轮廓允许接触方向的局部化。最完美的轮廓比较是允许的:(1)避免边缘接触(交叉角和不同形状角的相交齿轮)(2)提供一个传输误差的抛物线函数。双倍完美的执行突进的圆盘而产生小齿轮(见REF的第15章资料。7)。2.2 螺旋状的斜齿轮应用提供两个有误差的刀尖p 和g 而有局部接触会产生螺旋状的斜齿轮:p和g二者是分别用来产生小齿轮和齿轮的7。俩个刀尖p和g再齿呀的表面产生一个共同线C。(当提供外层轮廓的情况下)再加倍的情况下产生配合误差表面p和g刀尖只有接触的通常单一点,但不是一条接触的线。加倍可能产生齿轮而形成有斜齿的刀尖,或者是刀尖特有的部分。她是近代科技生产的齿轮当中教授欢迎的齿轮之一,通常小齿轮都被改良为滚动的7。2.3 圆柱型蜗杆齿轮传动通常蜗轮制造工艺是以下列的方式为基础。蜗轮的生产和蜗杆齿轮传动一样都是由一个滚刀运行的。应用的机床设置模拟蜗杆和蜗轮啮合而形成齿轮传动。然而,观察发现在这些条件下的制造引起不宜的轴接触,和高度传动误差。为把这些误差减少到最低限度可用以下不同的方法完成:(1) 长期在齿轮箱中研磨加工而使齿轮传动畸形;(2) 齿轮传动在长期的运转下产生负载,近而达到最大负载;(3) 蜗轮在蜗轮箱中被刨且传动装置利用刨削蜗杆部分背离减少到最小化,等等。制造者的方法是应用接触局限为基础的:(a)一个特大号的滚齿刀,和(b)几何学的修正。(见下面)。有蜗轮传动几何学的各种不同类型7,但是一个较好的是有Klingelnberg类型的蜗杆。这种蜗杆是由圆盘轮廓和锥形圆作成的7。有关蜗杆传动要考虑圆盘的一个螺纹的产生(在生产的方法中)。时常,再蜗轮传动局限接触中以达成应用滚刀且是比较特大号的蜗轮传动。3. 啮合的类型和传动误差的基本函数它假定齿牙表面任何点相切是正当的局限定位。此后,我们考虑两种啮合:(1)面与面,(2)面与曲线。面与面相切是平等观察表面的位置向量和表面单位提供7。面与曲线啮合是曲线边缘实在接触的结果7。面与面相切的TCA运算法则是以下列的矢量为基础的方程7: (1) (2)在固定的同等系统Sf位置矢量和表面常态中表现。这里,(ui, i)是表面的参数而且(1,2)决定表面的角位置。面与曲线的运算法则是用Sf方程来表现的7:(3)(4)在这里描述表面的啮合曲线是边缘曲线的切线。TCA的允许应用而发现两种啮合的类型,面与面和面与曲线。计算机处理的啮合模拟是以一个反复的程序为基础的非线性方程的数字解决方案8应用最高的相交表面之一,它可能变成:(1)避免边缘接触,(2)获得一个初步设计的抛物线函数7(图1)。初步设计的抛物线函数功能的应用是减少噪音的先决条件。 图1例证:(a)齿轮驱动的一个不成直线的传动函数1和没有欠对准的理想的线性函数2;(b)周期函数抛物线形成的传动误差2(1)。应用最高的允许向前分配传动的误差函数的是一个抛物线,而且允许分配同样最大误差值的6-8 。初步设计预期大小的传动误差抛物线函数和投入大量生产的工具是有关联的。图2表示在何处由于欠对准的误差的大小,传动误差函数形成两个支流:面对面接触和面与曲线接触。图2一个螺旋状齿轮的最大TCA误差结果=10:(a)传动误差函数在何处符合面与面相切和何处符合面与曲线相切;(b)在小齿轮齿面上相切的路径:(c)在齿轮表面的接触路径。4.装载齿轮传动的传动误差这一部分内容覆盖了一般用途FEM电脑程序应用装载齿轮驱动的传动误差果断程序3。TCA决定直接应用卸载齿轮驱动的传动误差。描述比较装载和卸载时齿轮驱动的传动误差在第5节。4.1 初步的考虑(1)由于载入齿轮驱动的结果,最大的传动误差被减少,而且接触比增加了。(2)创造者的方式允许在有限机械要素模型的自动生产之前的时候减少模型的准备对于应用结构组的每个结构1。(3)图3举例说明在负载之下被调查的一个结构。TAC允许确定齿面 1 和 2 的接触的点 M,在负载被应用(图3(a)之前,N2 和 N1 是表面的法线。(图3(b)和(c)获得小齿轮和传动机构的齿面的柔性变形应用扭距到传动机构的结果。图3(b)的例证和(c)以接触表面的不连续介绍为基础的。图3说明了:(a)一个单一接触结构(b)和(c)描述了不连续的接触表面及表面法线N1和N2(4) 图4概要的表示了2D空间的结构组。TCA决定了每个结构(将应用于柔性变形之前)的位置。图4说明了装载齿轮驱动啮合组的模拟模型。4.2 装载的齿轮驱动果断的运行应用限定的元素分析是为了传输误差的函数描述的程序是可适用于任何型的齿轮驱动。下列各项描述的是必须的阶段:(1) 因为工作机的设定应用而决定分析并生产新的小齿轮和齿轮表面(包括内圆)。(2)TCA决定了相关角位置对NF结构(a)(Nf=8-16)和(b)的观察关系。(5)(3)一个预处理程序应用于生产NF结构的模型:(a)小齿轮完全被强制放置,且(b)传动机构有开关而使形成一个旋转的表面。且规定扭距被应用于这个表面。(图5)图5不成型结构和弹性变形的度量 (4)从个方面获得一个装载齿轮驱动的传动误差的总功能:(1)误差引起受热面的配合误差,(2)有弹性的误差。(6)5.数字例证表1是设计一个螺旋齿轮传动的设计参数。考虑下列啮合状态和传动接触:(1) 对于生产传动机构和小齿轮齿条,它们分别地有如横断面的一个直线和抛物线轮廓。所谓的高的配合误差是由生产齿条刀轮廓产生的。(2) 齿轮驱动的欠对准是由轴角 0的误差引起的。(3) 给由 0所引起的传动误差提供了一个初步设计的抛物线函数。(4) TCA(齿接触分析)决心应用由引起的卸货和装载齿轮驱动的传动误差。这种调查能够影响传动误差大小方面的负载。(5) 电脑程式的应用能分析有限的机械要素而决定装载的齿轮驱动的应力。(6) 调查轴向接触的成型。表1设计参数小齿轮的齿牙数目,N121传动机构的齿牙数目, N2277常态组件,mn5.08mm正压力角, nn25小齿轮螺旋线的方向左手方螺旋角, 30齿面宽, b70mm小齿轮齿条刀抛物线系数, aca0.002mm1圆柱蜗杆的定位半径, rwa98mm滚动小齿轮的修正系数, amrb0.00008rad/mm2小齿轮的应用扭距c250Nm用下列的一个例子来描述:例1:考虑一个排列的齿轮驱动( =0)卸下齿轮驱动。抛物线功能提供一个最大值的传动误差 2(1)=8 (图6(a)。循环啮合.把小齿轮和轮齿方面的轴向接触定位纵向(图(b)和(c)。图6一个欠对准卸货齿轮传动的计算结果:(a)传动误差函数(b)和(c)在小齿轮和轮齿表面上的接触路径。6. 噪音的两个传输误差函数的有力对比6.1 应用方式概念上的考虑噪音信号的源动力是以假定为基础的,声波发生的摆动的速度与传动机构的速度瞬时值成比例的变动。这一假定(即使大体上不是很正确)是很好的第一个猜测,因为它避免了齿轮驱动的一个复杂动模型的应用。我们提议并强调应用下列的状态方式:(a)目标信号的动力是不同的,但并不是肯定的绝对值信号。(b)不同的信号动力大体上引出一个不同结果为两个不同的光滑传动误差函数。 提议应用的传动误差函数引起的功能信号是以基部平均数角尺比较为基础的9。定义如此的比较信号模拟强度(7)这里描述了传动机构的角速度偏差的平均值,而且 rms描述了rms需要的值 2(1)。传动误差回收功率定义为2= m 211+ 2(1), m 21 是齿数比。区别考虑计时,我们获得传动机构的角速度(8)其中假定为常数。在第二个术语的右边,(8)表现了对于速度的变动(9)上面的定义假设传输错误函数是连续可微的。在用有限元方法模拟负载齿轮启动器计算的情况下,这个函数是用有限个给定的点(1)i,(2)i(i=1,2)来定义的。为了Eq的使用,各点的给定值必须用连续函数进行插值计算。6.2. 分段函数的插补在这种情况下(图7),用一条直线将两个连续的数据点连接起来。在i和i-1点之间的速度是不变的,并且由下式确定:(10)图7插补函数传输误差分段的应用于线性函数数据点的选择如下:(i)增量(1)i(1)i1在每个区间i 内被认为是不变的。基于这种假设,两个功率量的比值式如下所示:(11)7. 结论通过先前的讨论,计算和数字的例子能够得到下列的结论:(1)齿轮驱动(如果没有提供充足的表面修正)的对准误差可能引起混合啮合:(a)面与面和(b)边缘接触(如表面与曲线)边缘接触可通过初步设计的抛物线函数(PPF)来避免。(2)调查发现传动误差抛物线函数的应用可减少齿轮驱动的噪音和震动。应用PPF最少要修正生产齿轮驱动的一个构件,通常为小齿轮。(或者是蜗杆驱动的蜗杆)(3)负荷齿轮启动器的传输错误的确定需要运用一个一般用途的有限元电脑程序。负荷齿轮启动器配有弹性可变的轮齿,这样接触率增加,由于启动器的未对准而产生的传输错误将减少。由于使用了作者设计的有限元模块的自动产生方法使得模块的准备时间大大的缩短了。这种方法是专门为确定负荷齿轮传输错误而设计的。致谢作者对格林森基金会和日本雅马哈公司在财政上的支持表示深切地感谢。参考文献1 J. Argyris, A. Fuentes and F.L. Litvin, Computerized integrated approach for design and stress analysis of spiral bevel gears, Comput. Methods Appl. Mech. Engrg. 191 (2002), pp. 10571095. SummaryPlus | Full Text + Links | PDF (1983 K) 2 Gleason Works, Understanding Tooth Contact Analysis, Rochester, New York, 1970. 3 Hibbit, Karlsson & Sirensen, Inc., ABAQUS/Standard Users Manual, 1800 Main Street, Pawtucket, RI 20860-4847, 1998. 4 Klingelnberg und Shne, Ettlingen, Kimos: Zahnkontakt-Analyse fr Kegelrder, 1996. 5 F.L. Litvin et al., Helical and spur gear drive with double crowned pinion tooth surfaces and conjugated gear tooth surfaces, USA Patent 6,205,879, 2001. 6 F.L. Litvin, A. Fuentes and K. Hayasaka, Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears, Mech. Mach. Theory 41 (2006), pp. 83118. SummaryPlus | Full Text + Links | PDF (1234 K) 7 F.L. Litvin and A. Fuentes, Gear Geometry and Applied Theory (second ed.), Cambridge University Press, New York (2004). 8 J.J. Mor, B.S. Garbow, K.E. Hillstrom, User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74, Argonne, Illinois, 1980. 9 A.D. Pierce, Acoustics. An Introduction to Its Physical Principles and Applications, Acoustical Society of America (1994). 10 J.D. Smith, Gears and Their Vibration, Marcel Dekker, New York (1983). 11 H.J. Stadtfeld, Gleason Bevel Gear TechnologyManufacturing, Inspection and Optimization, Collected Publications, The Gleason Works, Rochester, New York (1995). 12 O.C. Zienkiewicz and 附件2:外文原文Reduction of noise of loaded and unloaded misaligned gear drives Faydor L. Litvina, Daniele Vecchiatoa, Kenji Yukishimaa, Alfonso Fuentesb, , , Ignacio Gonzalez-Perezb and Kenichi Hayasakac aGear Research Center, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USAbDepartment of Mechanical Engineering, Polytechnic University of Cartagena, C/Doctor Fleming, s/n, 30202, Cartagena, Murcia, SpaincGear R&D Group, Research and Development Center, Yamaha Motor Co., Ltd., 2500 Shingai, Iwata, Shizuoka 438-8501, Japan Received 22 February 2005; revised 6 May 2005; accepted 17 May 2005. Available online 25 January 2006.AbstractTransmission errors are considered as the main source of vibration and noise of gear drives. The impact of two main functions of transmission errors on noise is investigated: (i) a linear one, caused by errors of alignment, and (ii) a predesigned parabolic function of transmission errors, applied for reduction of noise. It is shown that a linear function of transmission errors is accompanied with edge contact, and then inside the cycle of meshing, the meshing becomes a mixed one: (i) as surface-to-surface tangency, and (ii) surface-to-curve meshing when edge contact starts. Application of a predesigned parabolic function of transmission errors enables to absorb the linear functions of transmission errors caused by errors of alignment, reduce noise, and avoid edge contact. The influence of the load on the function of transmission errors is investigated. Elastic deformations of teeth enable to reduce the maximal transmission errors in loaded gear drives. Computerized simulation of meshing and contact is developed for loaded and unloaded gear drives. Numerical examples for illustration of the developed theory are provided. Keywords: Gear drives; Transmission errors; Tooth contact analysis (TCA); Finite element analysis; Reduction of noise Article Outline1. Introduction 2. Modification of tooth surfaces 2.1. Helical gear drives 2.2. Spiral bevel gears 2.3. Worm gear drives with cylindrical worm3. Types of meshing and basic functions of transmission errors 4. Transmission errors of a loaded gear drive 4.1. Preliminary considerations 4.2. Application of finite element analysis for determination of function of transmission errors of a loaded gear drive5. Numerical examples 6. Comparison of the power of noise for two functions of transmission errors 6.1. Conceptual consideration of applied approach 6.2. Interpolation by a piecewise linear function7. Conclusion Acknowledgements References1. IntroductionSimulation of meshing of gear drives performed by application of tooth contact analysis (TCA) and test of gear drives have confirmed that transmission errors are the main source of vibrations of the gear box and such vibrations cause the noise of gear drive 1, 2, 4, 5, 6, 7, 10 and 11. The shape of functions of transmission errors depends on the type of errors of alignment and on the way of modification of gear tooth surfaces performed for improvement of the drive (see Section 2). The reduction of noise proposed by the authors is achieved as follows: (1) The bearing contact of tooth surfaces is localized.(2) A parabolic function of transmission errors is provided. This allows to absorb linear functions of transmission errors caused by misalignment 7.(3) One of the pair of mating surfaces is modified by double-crowning (see Section 2). This allows usually to avoid edge contact (see Section 5).The authors have compared the results of application of TCA for loaded and unloaded gear drives. It is shown that transmission errors of a loaded gear drive are reduced. The developed approach is illustrated with numerical examples (see Section 5). 2. Modification of tooth surfacesReduction of noise of a gear drive requires modification of one of the pair of contacting surfaces. The surface modification is illustrated for three types of gear drives: helical gears, spiral bevel gears, and worm gear drives. 2.1. Helical gear drivesProfile crowning of helical gears may be illustrated considering that the mating surfaces are generated by two rack-cutters with mismatched profiles 5 and 7. Profile crowning allows to localize the bearing contact. Double-crowning in comparison with profile crowning allows to: (i) avoid edge contact (caused by errors of crossing angle and different helix angles of mating gears), and (ii) provide a parabolic function of transmission errors. Double-crowning is performed by plunging of the disk that generates the pinion (see details in Chapter 15 of Ref. 7).2.2. Spiral bevel gearsLocalization of contact of generated spiral bevel gears is provided by application of two mismatched head-cutters p and g used for generation of the pinion and the gear, respectively 7. Two head-cutters p and g have a common line C of generating tooth surfaces (in the case when profile crowning is provided). In the case of double-crowning, the mismatched generating surfaces p and g of the head-cutters have only a common single point of tangency, but not a line of tangency. Double-crowning of a generated gear may be achieved by tilting of one of the pair of generating head-cutters, or by proper installment of one of the head-cutters. It is very popular for the modern technology that during the generation of one of the mating gears, usually of the pinion, modified roll is provided 7. 2.3. Worm gear drives with cylindrical wormVery often the technology of manufacturing of a worm-gear is based on the following approach. The generation of the worm-gear is performed by a hob that is identical to the worm of the gear drive. The applied machine-tool settings simulate the meshing of the worm and worm-gear of the drive. However, manufacture with observation of these conditions causes an unfavorable bearing contact, and high level of transmission errors. Minimization of such disadvantages may be achieved by various ways: (i) by long-time lapping of the produced gear drive in the box of the drive;(ii) by running of the gear drive under gradually increased load, up to the maximal load;(iii) by shaving of the worm-gear in the box of the drive by using a shaver with minimized deviations of the worm-member, etc.The authors approach is based on localization of bearing contact by application of: (a) an oversized hob, and (b) modification of geometry (see below). There are various types of geometry of worm gear drives 7, but the preferable one is the drive with Klingelnbergs type of worm. Such a worm is generated by a disk with profiles of a circular cone 7. The relative motion of the worm with respect to the generating disk is a screw one (in the process of generation). Very often localization of bearing contact in a worm gear drive is achieved by application of a hob that is oversized in comparison with the worm of the drive. 3. Types of meshing and basic functions of transmission errorsIt is assumed that the tooth surfaces are at any instant in point tangency due to the localization of contact. Henceforth, we will consider two types of meshing: (i) surface-to-surface, and (ii) surface-to-curve. Surface-to-surface tangency is provided by the observation of equality of position vectors and surface unit normals 7. Surface-to-curve meshing is the result of existence of edge contact 7. The algorithm of TCA for surface-to-surface tangency is based on the following vector equations 7:(1)(2)that represent in fixed coordinate system Sf position vectors and surface unit normals . Here, (ui, i) are the surface parameters and (1,2) determine the angular positions of surfaces. The algorithm for surface-to-curve tangency is represented in Sf by equations 7(3)(4)Here, represents the surface that is in mesh with curve is the tangent to the curve of the edge. Application of TCA allows to discover both types of meshing, surface-to-surface and surface-to-curve. Computerized simulation of meshing is an iterative process based on numerical solution of nonlinear equations 8. By applying double-crowning to one of the mating surfaces, it becomes possible to: (i) avoid edge contact, and (ii) obtain a predesigned parabolic function 7 (Fig. 1). Application of a predesigned parabolic function is the precondition of reduction of noise. (17K) Fig. 1.Illustration of: (a) transmission functions 1 of a misaligned gear drive and linear function 2 of an ideal gear drive without misalignment; (b) periodic functions 2(1) of transmission errors formed by parabolas. Application of double-crowning allows to assign ahead that function of transmission errors is a parabolic one, and allows to assign as well the maximal value of transmission errors as of 68. The expected magnitude of the predesign parabolic function of transmission errors and the magnitude of the parabolic plunge of the generating tool have to be correlated. Fig. 2 shows the case wherein due to a large magnitude of error of misalignment, the function of transmission errors is formed by two branches: of surface-to-surface contact and of surface-to-curve contact. (31K) Fig. 2.Results of TCA of a case of double-crowned helical gear drive with a large error =10: (a) function of transmission errors wherein corresponds to surface-to-surface tangency and correspond to surface-to-curve tangency; (b) path of contact on pinion tooth surface; (c) path of contact on gear tooth surface.4. Transmission errors of a loaded gear driveThe contents of this section cover the procedure of determination of transmission errors of a loaded gear drive by application of a general purpose FEM computer program 3. Transmission errors of an unloaded gear drive are directly determined by application of TCA. Comparison of transmission errors for unloaded and loaded gear drives is represented in Section 5. 4.1. Preliminary considerations(i) Due to the effect of loading of the gear drive, the maximal transmission errors are reduced and the contact ratio is increased(ii) The authors approach allows to reduce the time of preparation of the model by the automatic generation of the finite element model 1 for each configura
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文化遗产保护与利用项目资金申请项目文化产业发展报告
- 2025年绿色建材市场推广策略与绿色建筑材料政策导向分析报告
- 推拿治疗学练习题库及答案详解【必刷】
- 国企企业面试题库(易错题)附答案详解
- 解析卷公务员考试《常识》章节练习试题(详解版)
- 押题宝典期货从业资格之《期货法律法规》试题及参考答案详解(能力提升)
- 2025年度水库水利设施改造承包经营协议
- 2025版汽车展厅租赁合同范本(含员工培训)
- 2025电子商务论文AI智能一键生成与版权保护合同
- 2025版外墙涂料粉刷及维护保养服务协议
- 社会化媒体全套教学课件
- 福建升辉鞋业有限公司年加工EVA鞋底385万双、TPR鞋底65万双、PVC鞋底60万双项目环评报告表
- 胸腺瘤诊断治疗指南
- 班主任到场签到表
- 视网膜静脉阻塞.LM
- 海底捞-A级门店管理制度
- 《陶行知教育名篇》读书笔记(课堂PPT)
- 二年级上册口算100道(6套直接打印)
- 员工创新奖励办法
- 小学语文《一定要争气》教案设计
- 2015年上海齐正金融企业文化建设方案
评论
0/150
提交评论