




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
城市表层土壤重金属污染分析一、摘要土壤重金属污染问题是全球环境科学研究的重要内容 ,特别是城市土壤的重金属污染问题是当今的一个热门研究课题。随着全球范围内城市化水平的提高 ,工业发展、交通拥挤、人类活动的影响强烈 ,城市土壤中重金属污染不仅数量大 ,而且种类繁多 ,一旦造成污染 ,对人类的健康会造成极大的危害针对此问题必须了解其传播特点、危害范围、从而得知相应解决方案。 1、其传播特征如下:重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。环境污染方面所指的重金属主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。随着全球经济化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。因此引起世界各国的广泛重视。目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万 t、Cu为340万 t、Pb为500万 t、Mn为1500万 t、Ni为100万 t1。中国北方大城市的蔬菜基地和部分商品粮基地也存在着不同程度的重金属污染,如北京、天津、西安、沈阳、济南、长春、郑州等地;。南方相对较轻,如福州、宁波、上海、武汉、成都等地。土壤重金属污染将会造成生态系统的严重破坏。从中国土壤资源状况看,到2000年底中国人均耕地仅为0.1 hm2,而且随着今后中国经济社会的发展如生态退耕、农业结构调整及自然灾害损毁等,土壤资源将进一步减少。因而如何有效地控制及治理土壤重金属的污染,改良土壤质量,将成为生态环境保护工作中十分重要的一项内容。本文主要从土壤中重金属污染物来源与分布、土壤中重金属污染物的现行治理方法入手,提出土壤中重金属污染物防治的环境矿物学新方法。旨在保护环境,提高土壤的环境质量。 1 土壤中重金属污染物来源与分布土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。1.1 大气中重金属沉降大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。大气中的大多数重金属是经自然沉降2和雨淋沉降进入土壤的。如瑞典中部Falun市区的铅污染3,它主要来自于市区铜矿工业厂、硫酸厂、油漆厂、采矿和化学工业产生大量废物,由于风的输送,这些细微颗粒的铅,从工业废物堆扩散至周围地区。南京某生产铬的重工业厂4铬污染叠加已超过当地背景值4.4倍,污染以车间烟囱为中心,范围达1.5 km2,污染范围最大延伸下限1.38 km。俄罗斯的一个硫酸生产厂5也是由工厂烟囱排放造成S、V、As的污染。公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu的污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。在宁杭公路南京段6两侧的土壤形成Pb、Cr、Co污染晕带,且沿公路延长方向分布,自公路向两侧污染强度减弱。在宁连一级公路淮阴段7两侧的土壤铅含量增高,向两侧含量逐渐降低,且在地表030 cm铅的含量较高。在法国索洛涅地区A71号高速公路8沿途严重污染重金属Pb、Zn、Cd,其沉降粒子浓度超过当地土壤背景值28倍,而公路旁重金属浓度比沉降粒子中高726倍。在斯洛文尼亚9从居波加到扎各瑞波公路两侧,铅除了分布在公路两侧以外,还受阶地地貌和盛行风的影响,高铅出现在低地,公路顺风一侧铅含量较高。经过自然沉降和雨淋沉降进入土壤的重金属污染,主要以工矿烟囱、废物堆和公路为中心,向四周及两侧扩散;由城市郊区农区,随距城市的距离加大而降低,特别是城市的郊区污染较为严重。此外,还与城市的人口密度、城市土地利用率、机动车密度成正相关;重工业越发达,污染相对就越严重。此外,大气汞的干湿沉降1012也可以引起土壤中汞的含量增高。大气汞通过干湿沉降进入土壤后,被土壤中的粘土矿物和有机物的吸附或固定,富集于土壤表层,或为植物吸收而转入土壤,造成土壤汞的浓度的升高。1.2 农药、化肥和塑料薄膜使用施用含有铅、汞、镉、砷等的农药和不合理地施用化肥,都可以导致土壤中重金属的污染。一般过磷酸盐中含有较多的重金属Hg、Cd、As、Zn、Pb,磷肥次之,,氮肥和钾肥含量较低,但氮肥中铅含量较高,其中As和Cd污染严重13。经过对上海地区菜园土地、粮棉地的研究14,施肥后,Cd的含量从0.134 mg/kg升到0.316 mg/kg,Hg的含量从0.22 mg/kg升到0.39 mg/kg,Cu、Zn 增长2/3。通过新西兰1550 a前和现今同一地点58个土样分析,自施用磷肥后,镉从0.39 mg/kg升至0.85 mg/kg。在阿根廷16由于传统无机磷肥的施入,进而导致土壤重金属Cd、Cr、Cu、Zn、Ni、Pb的污染。农用塑料薄膜生产应用的热稳定剂中含有Cd、Pb,在大量使用塑料大棚和地膜过程中都可以造成土壤重金属的污染。1.3 污水灌溉污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水包括生活污水、商业污水和工业废水。由于城市工业化的迅速发展,大量的工业废水涌入河道,使城市污水中含有的许多重金属离子,随着污水灌溉而进入土壤。在分布上,往往是靠近污染源头和城市工业区土壤污染严重,远离污染源头和城市工业区,土壤几乎不污染17。近年来污水灌溉已成为农业灌溉用水的重要组成部分,中国自60年代至今,污灌面积迅速扩大,以北方旱作地区污灌最为普遍,约占全国污灌面积的90%以上。南方地区的污灌面积仅占6%,其余在西北和青藏18。污灌导致土壤重金属Hg、Cd、Cr、As、Cu、Zn、Pb等含量的增加。淮阳污灌区自污灌以来,金属Hg、Cd、Cr、Pb、As等就逐渐增高,19951997年已超过警戒级19。太原污灌区的重金属Pb、Cd、Cr含量远远超过其当地背景值,且积累量逐年增高20。1.4 污泥施肥污泥中含有大量的有机质和氮、磷、钾等营养元素,但同时污泥中也含有大量的重金属,随着大量的市政污泥进入农田,使农田中的重金属的含量在不断增高。污泥施肥可导致土壤中Cd、Hg、Cr、Cu、Zn、Ni、Pb含量的增加,且污泥施用越多,污染就越严重,Cd、Cu、Zn引起水稻、蔬菜的污染;Cd、Hg可引起小麦、玉米的污染;污泥增加,青菜中的Cd、Cu、Zn、Ni、Pb也增加21。Anthony22研究表明,用城市污水、污泥改良土壤,重金属Hg、Cd、Pb等的含量也明显增加。1.5 含重金属废弃物堆积含重金属废弃物种类繁多,不同种类其危害方式和污染程度都不一样。污染的范围一般以废弃堆为中心向四周扩散。通过对武汉市垃圾堆放场23、杭州某铬渣堆存区24、城市生活垃圾场25及车辆废弃场26附近土壤中的重金属污染的研究,这些区域的重金属Cd、Hg、Cr、Cu、Zn、Ni、Pb、As、Sb、V、Co、Mn的含量高于当地土壤背景值,重金属在土壤中的含量和形态分布特征受其垃圾中释放率的影响,且随距离的加大重金属的含量而降低。由于废弃物种类不同,各重金属污染程度也不尽相同,如铬渣堆存区的Cd、Hg、Pb为重度污染,Zn为中度污染,Cr、Cu为轻度污染。1.6 金属矿山酸性废水污染金属矿山的开采、冶炼、重金属尾矿、冶炼废渣和矿渣堆放等,可以被酸溶出含重金属离子的矿山酸性废水,随着矿山排水和降雨使之带入水环境(如河流等)或直接进入土壤,都可以间接或直接地造成土壤重金属污染。1989年我国有色冶金工业向环境中排放重金属Hg为56 t,Cd为88 t,As为173 t,Pb为226 t27。矿山酸性废水重金属污染的范围一般在矿山的周围或河流的下游,在河流中不同河段的重金属污染往往受污染源(矿山)控制,河流同一污染源的下段自上游到下游,由于金属元素迁移能力减弱和水体自净化能力的适度恢复,金属化学污染强度逐渐降低。江西乐安江沽口中洲28由于遭受德兴铜矿的污染,水体及土壤中的重金属Cu、Pb、Zn、Cr含量增高,至鄱阳湖段重金属含量逐渐降低。美国科罗拉多州罗拉多流域29受采矿的影响,重金属元素Cd、Zn、Pb、As的浓度,以污染源为最高,之后随着与污染源距离延长而逐渐降低。莱安河30重金属污染,来自一个大型铜矿,导致重金属浓度远远超过当地背景值。流域重金属污染随季节变化而异,枯水期重金属的含量明显高于丰水期31。河流流速减缓可以导致该流段重金属含量增加32。同一区域土壤中重金属污染物的来源途径可以是单一的,也可以是多途径的。胡永定33通过研究徐州荆马河区域土壤重金属污染的成因中指出:Cr、Cu、Zn、Pb是由垃圾施用引起的,As是由农灌引起的,Cd是由农灌和垃圾施用引起的,Hg是各种途径都具备。王文祥34通过对山东省耕地重金属元素污染状况的研究说明,工业快速发展地区铅高于农业环境,铅与距公路远近有关。乡镇企业技术、设备落后,原材料利用率低,造成其周边土壤重金属污染相当严重。据贵州1986年的统计,全省乡镇排放汞14.7万kg,土壤中有的地方达56.64 mg/kg,超过未污染土壤的84.5倍。要引起高度重视。总的来说:工业化程度越高的地区污染越严重,市区高于远郊和农村,地表高于地下,污染区污染时间越长重金属积累就越多,以大气传播媒介土壤重金属污染土壤的具有很强的叠加性,熟化程度越高重金属含量越高。 重金属不但传播途径多而且波及危害极广2、重金属危害: 地球岩石圈经历了千百万年的漫长的地质变化后才形成了土壤。 土壤和人类之间保持着一种自然平衡关系, 土壤和其他环境因素一样对人类起作用, 人类活动也可以影响土壤环境, 他们之间互相依赖、 互相制约、 紧密地联系在一起, 人通过生产活动从自然界取得资源和能量, 再以 “三废” 形式向土壤系统排放,造成土壤污染, 然后被植物吸收并在体内积累, 人吃了污染的粮食、 蔬菜等食物后, 重金属元素就在人体蓄积, 产生各种危害, 所以充分认识土壤污染及危害, 保护土壤, 防治污染是十分重要的任务。1 土壤重金属污染在土壤的无机污染物中, 突出表现为重金属的污染。 重金属不能为土壤微生物所分解, 而易于积累, 转化为毒性更大的甲基化合物, 甚至有的通过食物链以有害浓度在人体内蓄积, 严重危害人体健康。土壤重金属污染物主要有铅、 镉、 汞、 砷、 铬、 铜、 铁、 锌等, 砷虽不属于重金属, 但因其行为与来源及危害都与重金属相似, 故通常列入重金属类进行讨论。就对植物需要而言, 可分为两类:一类是植物生长发育不需要的元素, 而对人体健康危害比较明显, 如镉、 汞、 铅等, 另一类是植物正常发育所需元素, 且对人体又有一定生理功能, 如铜、 锌等, 但过多会发生污染, 妨碍植物生长发育。同种金属, 由于它们在土壤中存在的形态不同, 其迁移转化特点和污染性质也不同, 因此在研究土壤中重金属的危害时, 不仅要注意它们的总含量, 还必须重视各种形态的含量。汞土壤的汞污染主要来自于污染灌溉、 燃煤、 汞冶炼厂和汞制剂厂(仪表、 电气、 氯碱工业)的排放。如一个700 兆瓦的热电站, 每天可排放汞215 公斤, 估计全世界仅由燃煤而排放到大气中的汞, 一年就有3000 吨左右。含汞颜料的应用、 用汞做原料的工厂、 含汞农药的施用等也是重要的汞污染源。汞进入土壤后95%以上能迅速被土壤吸持或固定, 这主要是土壤的粘土矿物和有机质有强烈的吸附作用, 因此汞容易在表层积累, 并沿土壤的纵深垂直分布递减。 土壤中汞的存在形态有金属汞、 无机态与有机态, 并在一定条件下相互转化。在正常EH 和PH 范围内, 汞能以零价状态存在是土壤中汞的重要特点。植物能直接通过根系吸收汞, 在很多情况下, 汞化合物可能是在土壤中先转化为金属汞或甲基汞后才能被植物吸收。无机汞有HgSO 4、 Hg (OH) 2、 HgCL 2、 HgO , 它们因溶解度低, 在土壤中迁移转化能力很弱, 但在土壤微生物作用下, 转化为具有剧烈毒性的甲基汞, 也称汞的甲基化。 微生物合成甲基汞在好氧或厌氧条件下都可以进行。 在好氧条件下主要形成脂溶性的甲基汞,可被微生物吸收、 积累而转入食物链, 造成对人体的危害; 在厌氧有酶催化下, 主要形成二甲基汞, 它不溶于水, 在微酸性环境中, 二甲基汞也可转化为甲基汞。 汞对植物的危害因作物的种类不同而异, 汞在一定浓度下使作物减产, 较高浓度下甚至可使作物死亡。植物吸收和累积与汞的形态有关, 其顺序是: 氯化甲基汞 氯化乙基汞 醋酸苯汞 氯化汞 氧化汞 硫化汞。不同植物对汞吸收能力是: 针叶植物 落叶植物; 水稻 玉米 高果 小麦; 叶菜类 根菜类 果菜类。土壤中汞含量过高, 汞不但能在植物体内累积, 还会对植物产生毒害, 引起植物汞中毒, 严重情况下引起叶子和幼蕾掉落。汞化合物侵入人体, 被血液吸收后可迅速弥散到全身各器官, 当重复接触汞后, 就会引起肾脏损害。镉 镉主要来源于镉矿、 冶炼厂。因镉与锌同族, 常与锌共生, 所以冶炼锌的排放物中必有ZnO、 CdO , 它们挥发性强, 以污染源为中心可波及数千米远。镉工业废水灌溉农田也是镉污染的重要来源。镉被土壤吸附, 一般在0- 15cm 的土壤层累积, 15cm 以下含量显著减少。 土壤中的镉以CdCO 3、 Cd (PO 4) 2、 及Cd (OH) 2 的形态存在, 其中以CdCO 3 为主, 尤其是在PH 7 的石灰性土壤中, 土壤中的镉的形态可划分为可给态和代换态, 它们易于迁移转化, 而且能被植物吸收, 不溶态镉在土壤中累积, 不易被植物吸收, 但随环境条件的改变二者可互相转化。如土壤偏酸时, 镉的溶解度增高, 而且在土壤中易于迁移; 土壤处于氧化条件下(稻田排水期及旱田)镉也易变成可溶性, 被植物吸收也多。 土壤对镉有很强的吸着力, 因而镉易在土壤中造成蓄积。 镉在土壤中吸附迁移还受伴随离子如Zn2+、 Pb2、 Cu2+、 Fe2+、 Ca2+等的影响,如锌的存在就可抑制植物对镉的吸收。镉是植物体不需要的元素, 但许多植物均能从水中和土壤中摄取镉, 并在体内累积。 累积量取决于环境中的镉的含量和形态。镉在植物各部分分布基本上是: 根 叶 枝的干皮 花、 果、 籽粒。水稻研究表明同样规律, 即主要在根部累积, 为总量的8215% , 地上部分仅占1715% , 其顺序: 为根 茎叶 稻米 糙米。土壤中过量的镉, 不仅能在植物体内残留, 而且也会对植物的生长发育产生明显的危害。 镉能使植物叶片受到严重伤害, 致使生长缓慢, 植株矮小, 根系受到抑制, 造成生物障碍, 降低产量, 在高浓度镉的毒害下发生死亡。镉对农业最大的威胁是产生 “镉米” 、 “镉菜” , 人食用这种被镉污染的农作物, 则会得骨痛病。 另外, 镉会损伤肾小管, 出现糖尿病, 镉还会造成肺部损害, 心血管损害, 甚至还有致癌、 致畸、致突变2 的报道。铅 铅是土壤污染较普遍的元素。污染源主要来自汽油里添加抗爆剂烷基铅, 汽油燃烧后的尾气中含大量铅, 飘落在公路两侧数百米范围内的土壤中。另外矿山开采、 金属冶炼、 煤的燃烧等也是重要的污染源。在矿山、 冶炼厂附近土壤含铅量高达1500cm kg 以上3 。随着我国乡镇企业的快速发展,“三废” 中的铅也大量进入农田, 一般进入土壤中的铅在土壤中易与有机物结合, 不易溶解, 土壤铅大多发现在表土层, 表土铅在土壤中几乎不向下移动。植物对铅的吸收与积累, 决定于环境中铅的浓度、 土壤条件、 植物的叶片大小和形状等。植物吸收的铅主要累积在根部,只有少数才转移到地上部分。积累在根、 茎和叶内的铅, 可影响植物的生长发育, 使植物受害。铅对植物的危害表现为叶绿素下降。阻碍植物的呼吸及光合作用。谷类作物吸铅量较大, 但多数集中在根部, 茎秆次之, 籽实较少。 因此, 铅污染的土壤所生产的禾谷类茎秆不易作饲料。铅对动物的危害则是积累中毒。铅是作用于人体各个系统和器官的毒物, 能与体内的一系列蛋白质、 酶和氨基酸内的官能团络合, 干扰机体多方面的生化和生理活动, 导致对全身器官产生危害。铬 铬的污染源主要是铬电镀、 制革废水、 铬渣等。铬在土壤中主要有两种价态: Cr6+和Cr3+。 土壤中主要以三价铬化合物存在, 当它们进入土壤后, 90%以上迅速被土壤吸附固定, 在土壤中难以再迁移。Cr6+很稳定, 毒性大, 其毒害程度比Cr3+大100倍。而Cr3+则恰恰相反, Cr3+主要存在于土壤与沉积物中。土壤胶体对三价铬具有强烈的吸附作用, 并随PH 的升高而增强。土壤对六价铬的吸附固定能力较低, 仅有815%3612%。不过普通土壤中可溶性六价铬的含量很小, 这是因为进入土壤中的六价铬很容易还原成三价铬, 这其中, 有机质起着重要作用, 并且这种还原作用随着PH 的升高而降低。值得注意的是, 实验已证明, 在PH 615815 的条件下, 土壤的三价铬能被氧化为六价铬, 同时, 土壤中存在氧化锰也能使三价铬氧化成六价铬, 因此,三价铬转化成六价铬的潜在危害不容忽视。植物对铬的吸收, 95%蓄积于根部。据研究, 低浓度Cr6+能提高植物体内酶活性与葡萄糖含量, 高浓度时, 则阻碍水分和营养向上部输送, 并破坏代谢作用。铬对人体与动物也是有利有弊。人体含铬过低会产生食欲减退等症状。而Cr6+具有强氧化作用, 对人体主要是慢性危害,长期作用可引起肺硬化、 肺气肿、 支气管扩张, 甚至引发癌症5 。砷 土壤砷污染主要来自大气降尘、 尾矿与含砷农药, 燃煤是大气中砷的主要来源。通常砷集中在表土层10cm 左右, 只有在某些情况下可淋洗至较深土层, 如施磷肥可稍增加砷的移动性。 土壤中砷的形态按植物吸收的难易划分, 一般可分为水溶性砷、 吸附性砷和难溶性砷, 通常把水溶性砷、 吸附性砷总称为可给性砷, 是可被植物吸收利用的部分。 土壤中砷大部分为胶体吸收或和有机物络合螯合或和磷一样与土壤中铁、 铝、 钙离子相结合, 形成难溶化合物, 或与铁、 铝等氢氧化物发生共沉。PH和 EH 值影响土壤对砷的吸附, PH 值高, 土壤砷吸附量减少而水溶性砷增加; 土壤在氧化条件下, 大部分是砷酸, 砷酸易被胶体吸附, 而增加土壤固砷量。随EH 降低, 砷酸转化为亚砷酸, 可促进砷的可溶性, 增加砷害。植物在生长过程中, 吸收有机态砷后可在体内逐渐降解为无机态砷。砷可通过植物根系及叶片的吸收并转移至体内各部分, 砷主要集中在生长旺盛器官。 作物根茎叶、 籽粒含砷量差异很大, 如水稻含砷量分布顺序是稻根 茎叶 谷壳 糙米, 呈自下而上递降变化规律。砷中毒可影响作物生长发育, 砷对植物危害的最初症状是叶片卷曲枯萎, 进一步是根系发育受阻, 最后是植物根、 茎、 叶全部枯死。砷对人体危害很大, 在体内有明显的蓄积性, 它能使红血球溶解, 破坏正常的生理功能, 并具有遗传性、 致癌性和致畸性等。3、解决方案由附表知:由附表Table 1 表1 变量相关矩阵指标HgCdPbAsCuZnNiCrHg10.3340.4590.0800.3010.4720.0490.037Cd0.33410.6250.0610.5020.3770.1700.156Pb0.4590.62510.2140.5510.4500.2250.201As0.0800.0610.21410.3080.0550.692-0.023Cu0.3010.5020.5510.30810.3560.4430.158Zn0.4720.3770.4500.0550.35610.1470.120Ni0.0490.1700.2250.6920.4430.14710.323Cr0.0370.1560.201-0.0230.1580.1200.3231Table 2 特征性和累计贡献率因子旋转前旋转后总的特征值占总变量的百分率/累计贡献率/总的特征值占总变量的百分率/累计贡献率/F13.10338.79338.7931.66520.81020.810F21.57519.68258.4751.71021.37742.187F31.02112.76971.2431.09013.62555.812F40.7669.57080.8131.05813.22769.039F50.5376.70987.5220.99512.34381.482F60.4485.59593.1170.93111.63593.117表3 旋转前因子载荷矩阵指标F1F2F3F4F5F6Hg0.578-0.419-0.2480.4460.425-0.156Cd0.713-0.2960.087-0.4520.0200.260Pb0.811-0.2240.006-0.1900.1730.173As0.4360.736-0.3810.0920.1030.190Cu0.7770.097-0.041-0.283-0.154-0.522Zn0.631-0.359-0.0660.420-0.5230.130Ni0.5580.7460.0600.116-0.0590.012Cr0.3160.1560.8930.2190.117-0.004表四方差极大政教旋转后因子载荷矩阵指标F1F2F3F4F5F6Hg0.2110.0130.0010.936-0.215-0.096Cd0.9040.0040.0560.044-0.145-0.183Pb0.7760.1570.1020.324-0.164-0.186As0.0730.951-0.1240.0720.023-0.035Cu0.3560.2400.0540.125-0.135-0.878Zn0.2370.0360.0470.228-0.934-0.117Ni0.0580.8470.299-0.052-0.090-0.258Cr0.1000.0600.9830.009-0.039-0.0411.2 研究方法因子分析从变量的相关矩阵出发将一个m维的随机向量X分解成低于m个且有代表性的公因子和一个特殊的m维向量,使其公因子数取得最佳的个数,从而使对m维随机向量的研究转化成对较少个数的公因子的研究。设有n个样本,n个指标构成样本空间XX=(xij) i=1, 2, , n; j=1, 2, , m 因子分析过程一般经过以下步骤:(1)原始数据的标准化,标准化的公式为Xij =(XijXj)/j,其中Xij为第i个样本的第j个指标值,而Xj和j分别为j指标的均值和标准差。标准化的目的在于消除不同变量的量纲的影响,而且标准化转化不会改变变量的相关系数。(2)计算标准化数据的相关系数阵,求出相关系数矩阵的特征值和特征向量。(3)进行正交变换,使用方差最大法。其目的是使因子载荷两极分化,而且旋转后的因子仍然正交。(4)确定因子个数,计算因子得分,进行统计分析。因子分析只强调变量的离差(变化量)而不强调变量在样品中的比重(百分含量)。因子分析的数学模型中,通过正交的方差最大旋转法使每一个主因子只与最少个数的变量有相关关系,而使足够多的因子负荷均很小。变量或因子的重要程度都是以其方差大小来衡量的。因子旋转后每个变量因子负荷代表着在系统中作用或重要性程度,以各个变量目标因子载荷平方与因子方差贡献率乘积作为变量的权重,构成一个判别污染来源的综合指标,而且因子分析是一个客观计算同主观思维相结合的过程。其它多元统计分析(如判别分析,回归分析)的计算结果基本上是一个最终结果,可以直接予以应用,但因子分析的计算结果(因子解)只能看作是一个中间结果,剩下的部分要求人们用自己的思维来完成,这就涉及环境地球化学知识、经验,甚至于思维方式和哲学思想。2 结果与讨论2.1 结果分析太原市土壤单点样重金属元素含量的数据特征完全符合因子分析的要求,在这里以Hg、Cd、Pb、As、Cu、Cr、Ni、Zn八种重金属元素指标作因子分析,这样在解释各指标变化异常时可以着重讨论综合指标因子,同时为太原市重金属污染成因的解释提供一定的理论依据。以下对太原市土壤单点样重金属元素含量的数据标准化处理后,经SPSS11.0统计软件进行因子分析,可得出以下结果。首先给出太原市表层土壤Hg、Cd、Pb、As、Cu、Cr、Ni、Zn八种重金属原始含量数据的相关系数矩阵,如表1所示。可见,As和Ni的相关性最好,相关系数最大,为0.692,其次为Pb和Cd,相关系数为0.625,以下依次是Pb和Cu,Cd和Cu的相关性较好,相关系数分别为0.551和0.502, Pb和Hg的相关系数为0.459,其它元素之间的相关性并不是很好。从成因上来分析,相关性较好的元素可能在成因和来源上有一定的关联。因子分析的关键就是利用相关系数矩阵求出相应的因子的特征值和累计贡献率,用SPSS11.0统计软件计算可得出,见表2。在累积方差为93.117(90)的前提下,分析得到6个主因子,可以看到6个主因子提供了源资料的93.117的信息,满足因子分析的原则,而且从上表可以看出旋转前后总的累计贡献率没有发生变化,即总的信息量没有损失。从表52还可得出,旋转之后,主因子1和主因子2的方差贡献率均为20左右,主因子3到主因子6的方差贡献率的范围为11.635到13.625之间。这可以解释为因子1和因子2可能为太原市土壤重金属污染的最重要的污染源,对太原市重金属污染的贡献最大,因子3、因子4、因子5、因子6对太原市重金属污染有重要作用。因子分析的主要目的是将具有相近的因子荷载的各个变量置于一个公因子之下,正交方差最大旋转使每一个主因子只与最少个数的变量有相关关系,而使足够多的因子负荷均很小,以便对因子的意义作出更合理的解释。输出结果见表3和表4。由表3和表4可见,旋转前后因子荷载的变量结果基本一致。变量与某一个因子的联系系数绝对值(载荷)越大,则该因子与变量关系越近。正交因子解说明:因子1为Cd和Pb的组合,因子2为As和Ni的组合,因子3为Cr,因子4为Hg,因子5为Zn,因子6为Cu,Cd和Pb、As和Ni可能是同一个来源,而且这两组元素正是相关性最好的两组元素。图1 主因子在平面空间的等值线分布图为了更好的进行分析、评价,利用因子分析所得到的6个因子经过方差极大正交旋转后的太原市表层土壤单点样样本在六个主因子上的得分可作出各个因子在空间分布的等直线图,能更直观地说明各个元素在空间平面上的分布特征,见图12.2 讨论结合太原市工矿企业分布情况和主因子在平面空间的等值线分布图可以得出以下结论:从因子1图可以看出,Cd和Pb在来源上关联较密切,在空间分布上近似可认为是一个带状的污染源,呈带状分布,这主要因为Pb主要来自市中心交通源汽车尾气的排放,尤其是在迎泽区这一片,该处交通发达,太原市大部分一级市内交通线都在该区而且在研究区的东南部有三个明显的富集中心,靠北的两个中心把这一片连成一个区,形成一个高值区,对照太原市地图这三个中心的位置分别位于1太原橡胶厂,2太原线织印染厂,3山西针织厂和山西毛纺厂,根据文献,城市中的铅主要来源的厂矿企业部门为颜料厂,冶炼等工业的废水,橡胶和农药厂,而镉主要来源于颜料行业和石油化工厂。可以得出一个基本结论:市内交通尾气的排放和汽车轮胎的磨损是太原市土壤铅污染的基本来源,太原市表层土壤中的Cd含量市中心地带比西北城区高,东南城区又比市中心地带高,恰好与当地的主风向相一致,表明大气中含Cd 污染物的干湿沉降也是造成太原市土壤Cd污染的一个重要原因。而位于太原市东南的太原橡胶厂、太原线织印染厂、山西毛纺厂也是Pb和Cd局部高度富集的重要原因。因子2为元素As和Ni的组合,从因子2图可以得出以下结论,太原市表层土壤As和Ni基本未污染,只有个别点富集程度较高,污染达到中度污染,该富集中心的位置也在太原印染厂附近,主要来源于印染厂的废水排放。因子3为元素Cr,Cr的污染源属于面积型的,分布在太原市区建成区的北部,这一区是太原市的最大的工业区,该区有太原钢铁厂、太钢污水处理厂、新华化工厂、东安化工厂,山西化工厂,太原工具厂等厂矿企业大面积分布,虽然目前太原市土壤Cr污染并不十分严重,但如果不在这些源头上加以控制,Cr的污染就会很快在程度上和范围上进一步加深和扩大,由于太原市特殊的工业布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南永州市零陵区第二批公开引进急需紧缺专业人才(医疗岗9人)考前自测高频考点模拟试题及完整答案详解一套
- 2025湖南中医药大学第二附属医院招聘21人(第一批)模拟试卷及答案详解一套
- 航天科技知识考试题库及答案
- 模电考研考试题库及答案
- 2025年国电“学安全、反违章、防事故”学习考试活动题库(含答案)
- 2025年物流运输合伙合同
- 2025年广西壮族自治区省直机关公开遴选公务员笔试题及答案解析(A类)
- 海关检疫员考试题及答案
- 高三月考试卷数学及答案
- 魔法学院考试内容及答案
- 学员游泳培训合同协议
- 虚拟电厂综合管理制度
- 纪念九·一八:致敬那场永不妥协的抗争-主题班会课件
- 2025年周年热点大事件复习课件-【知识精讲精研】高三历史统编版(2019)二轮复习
- 【道法】做自强不息的中国人课件+-2024-2025学年统编版道德与法治七年级下册
- 老年人高血压健康知识
- 水泥电杆行业分析报告
- 煤矿安全监控系统培训课件
- T∕CEC 208-2019 电动汽车充电设施信息安全技术规范
- 全案托管设计合同范例
- 中医拔罐技术试题及答案
评论
0/150
提交评论