2019_2020学年高中数学第7章三角函数7.2任意角的三角函数7.2.3同角三角函数的基本关系式学案.docx_第1页
2019_2020学年高中数学第7章三角函数7.2任意角的三角函数7.2.3同角三角函数的基本关系式学案.docx_第2页
2019_2020学年高中数学第7章三角函数7.2任意角的三角函数7.2.3同角三角函数的基本关系式学案.docx_第3页
2019_2020学年高中数学第7章三角函数7.2任意角的三角函数7.2.3同角三角函数的基本关系式学案.docx_第4页
2019_2020学年高中数学第7章三角函数7.2任意角的三角函数7.2.3同角三角函数的基本关系式学案.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7.2.3同角三角函数的基本关系式学 习 目 标核 心 素 养1.理解并掌握同角三角函数基本关系式的推导及应用(重点)2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明(难点)1.通过同角三角函数基本关系式推理,培养学生的逻辑推理素养2.借助同角三角函数基本关系式的应用,提升学生的逻辑推理及数学运算核心素养.同角三角函数的基本关系(1)平方关系:sin2 cos2 1.商数关系:tan_.(2)语言叙述:同一个角 的正弦、余弦的平方和等于1,商等于角的正切思考:“同角”一词的含义是什么?提示一是“角相同”,如sin2cos21就不一定成立二是对任意一个角(在使得函数有意义的前提下),关系式都成立,即与角的表达式形式无关,如sin215cos2151,sin2cos21等1.已知,sin ,则tan ()AB2CD2A,sin ,cos ,则tan ,故选A2.已知sin ,则sin4cos4的值为()ABCDBcos21sin21,sin4cos4(sin2cos2)(sin2cos2).3.若sin 3cos 0,则的值为_因为sin 3cos 0,所以tan 3,因此原式.已知一个三角函数值求另两个三角函数值【例1】(1)若sin ,且是第三象限角,求cos ,tan 的值;(2)若cos ,求tan 的值;(3)若tan ,求sin 的值思路探究对(1)中明确是第三象限角,所以只有一种结果对(2),(3)中未指出角所在象限的情况,需按所在象限讨论,分类求解,一般有两种结果解(1)sin ,是第三象限角,cos ,tan .(2)cos 0,是第一、四象限角当是第一象限角时,sin ,tan ;当是第四象限角时,sin ,tan .(3)tan 0,是第二、四象限角由可得sin2.当是第二象限角时,sin ;当是第四象限角时,sin .利用同角三角函数的基本关系解决给值求值问题的方法:(1)已知角的某一种三角函数值,求角的其余三角函数值,要注意公式的合理选择,一般是先选用平方关系,再用商数关系;(2)若角所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角所在的象限不确定,应分类讨论,一般有两组结果1.已知sin cos ,且0,求tan 的值解法一:sin cos ,sin2cos21,sin2cos22sin cos 12,(sin cos )2,sin cos .同理(sin cos )212sin cos 1.sin cos 0,0,0,cos 0,sin cos .由,得或,tan 或tan .法二:sin cos ,12tan225tan 120,(3tan 4)(4tan 3)0,tan 或tan .化切求值【例2】已知tan 3,求下列各式的值(1);(2);(3)sin2cos2.解(1)原式.(2)原式.(3)原式.化切求值的方法技巧(1)已知tan m,可以求 或 的值,将分子分母同除以cos 或cos2,化成关于tan 的式子,从而达到求值的目的.(2)对于asin2bsin cos ccos2的求值,可看成分母是1,利用1sin2cos2进行代替后分子分母同时除以cos2,得到关于tan 的式子,从而可以求值.2.已知tan 2,求下列各式的值:(1);(2)4sin23sin cos 5cos2 .解(1)1.(2)4sin23sin cos 5cos2.这时分子和分母均为关于sin ,cos 的二次齐次式因为cos20,所以分子和分母同除以cos2,则4sin23sin cos 5cos21.应用同角三角函数关系化简【例3】若sin tan 0,化简.解sin tan 0,cos 0.原式.解答此类题目常用的方法有:(1)化切为弦,即把非正、余弦的函数都化成正、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下式子化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2cos21,以降低函数次数,达到化简的目的.3.化简:.解原式1.1.同角三角函数基本关系式的变形形式(1)平方关系:1sin2 cos2 ,1cos2 sin2 .(2)商数关系:sin tan cos ,cos .2.已知sin cos ,整体代入求值已知sin cos 求值的问题,一般利用三角恒等式,采用整体代入的方法求解涉及的三角恒等式:(sin cos )212sin cos ;(sin cos )212sin cos ;(sin cos )2(sin cos )22;(sin cos )2(sin cos )24sin cos .所以知道sin cos ,sin cos ,sin cos 这三者中任何一个,另两个式子的值均可求出3.应用平方关系式由sin 求cos 或由cos 求sin 时,注意的范围,如果出现无法确定的情况一定要对所在的象限进行分类讨论,以便确定其符号.1.如果是第二象限的角,下列各式中成立的是()Atan Bcos Csin Dtan B由商数关系可知A,D项均不正确,当为第二象限角时,cos 0,sin 0,故B项正确2.已知是第四象限角,cos ,则sin 等于()ABCDB由条件知sin .3.已知sin cos ,则sin cos _.sin cos ,(sin cos )2.sin22sin cos co

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论