



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2011年高考数学二轮专题复习立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:有两个面互相平行;其余各面都是四边形;每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等棱柱性质:棱柱的各个侧面都是平行四边形,所有的侧棱都相等; 棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体棱锥具有以下性质:底面是多边形;侧面是以棱锥的顶点为公共点的三角形;平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比截面面积和底面面积的比等于上述相似比的平方棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥多面体是由若干个多边形围成的几何体多面体有几个面就称为几面体,如三棱锥是四面体(2)圆柱、圆锥、圆台、球 分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:平行于底面的截面都是圆;过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和 因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形如果设直棱柱底面周长为,高为,则侧面积若长方体的长、宽、高分别是a、b、c,则其表面积(2)圆柱的侧面展开图是一个矩形矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长如果设圆柱母线的长为,底面半径为r,那么圆柱的侧面积,此时圆柱底面面积.所以圆柱的表面积(3)圆锥的侧面展开图是以其母线为半径的扇形如果设圆锥底面半径为r,母线长为,则侧面积,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为(4)正棱锥的侧面展开图是个全等的等腰三角形如果正棱锥的周长为,斜高为,则它的侧面积(5)正棱台的侧面积就是它各个侧面积的和如果设正棱台的上、下底面的周长是,斜高是,那么它的侧面积是(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环如果设圆台的上、下底面半径分别为,母线长为,那么它的侧面积是圆台的表面积等于它的侧面积与上、下底面积的和,即(7)球的表面积,即球的表面积等于其大圆面积的四倍3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积和高的积,即其中底面半径是,高是的圆柱的体积是(2)如果一个锥体(棱锥、圆锥)的底面积是,高是,那么它的体积是其中底面半径是,高是的圆锥的体积是,就是说,锥体的体积是与其同底等高柱体体积的(3)如果台体(棱台、圆台)的上、下底面积分别是,高是,那么它的体积是其中上、下底半径分别是,高是的圆台的体积是(4)球的体积公式:.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。(2)平行投影:投射线相互平行的投影。(3)三视图的位置关系与投影规律三视图的位置关系为:俯视图在主视图的下方、左视图在主视图的右方三视图之间的投影规律为:主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等5、直观图画法斜二测画法的规则:(1)在空间图形中取互相垂直的x轴和y轴,两轴交于O点,再取z轴,使90,且90(2)画直观图时把它们画成对应的轴、轴和轴,它们相交于,并使45, 90。(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于轴、轴和轴的线段(4)已知图形中平行于x轴和z轴的线段,在直观图中长度相等;平行于y轴的线段,长度取一半6. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线共面有且有一个公共点;平行直线共面没有公共点;异面直线不同在任一平面内。(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.7. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 直线与平面垂直判定定理:如果一条直线和一个平面内的两条相交直线垂直,则这条直线与这个平面垂直。推论:如果两条直线同垂直于一个平面,那么这两条直线平行.8. 平面平行与平面垂直.(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)(4)两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.三、方法总结1位置关系:(1)两条异面直线相互垂直 证明方法:证明两条异面直线所成角为90;证明线面垂直,得到线线垂直;证明两条异面直线的方向量相互垂直。(2)直线和平面相互平行证明方法:证明直线和这个平面内的一条直线相互平行;证明这条直线的方向量和这个平面内的一个向量相互平行;证明这条直线的方向量和这个平面的法向量相互垂直。(3)直线和平面垂直证明方法:证明直线和平面内两条相交直线都垂直,证明直线的方向量与这个平面内不共线的两个向量都垂直;证明直线的方向量与这个平面的法向量相互平行。(4)平面和平面相互垂直证明方法:证明这两个平面所成二面角的平面角为90;证明一个平面内的一条直线垂直于另外一个平面;证明两个平面的法向量相互垂直。2求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。(2)点到平面的距离求法:“一找二证三求”,三步都必须要清楚地写出来。等体积法。向量法。 3求角(1)两条异面直线所成的角求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。(2)直线和平面所成的角求法:“一找二证三求”,三步都必须要清楚地写出来。向量法,先求直线的方向量于平面的法向量所成的角,那么所要求的角为或。(3)平面与平面所成的角求法:“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。向量法,先求两个平面的法向量所成的角为,那么这两个平面所成的二面角的平面角为或。(4).向量法求角与距离相关的公式(务必熟练)1求空间角问题:异面直线所成的角;直线和平面所成的角;二面角()求异面直线所成的角:设、分别为异面直线a、b的方向向量,则两异面直线所成的角=()求线面角:设是斜线l的方向向量,是平面的法向量,则斜线l与平面所成的角=()求二面角法一:在内,在内,其方向如图,则二面角的平面角=法二、设是二面角的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角的平面角=(4)求点面距离:设是平面的法向量,在内取一点B,则 A到的距离四、练习题BCED1.如图,所有棱长都为2的正三棱柱,四边形是菱形,其中为的中点。(1) 求证:; (2)求证:面面;(3)求四棱锥与的公共部分体积。2如图所示,棱柱ABCDA1B1C1D1的所有棱长都等于2,ABC=60,平面AA1C1CABCD,A1AC=60。(1)证明:BDAA1;(2)求二面角DA1AC的平面角的余弦值。(3)在直线CC1上是否存在点P,使BP/DA1C1?若存在,求出点P的位置;若不存在,试说明理由。3、如图,在三棱锥P-ABC中,PAB是等边三角形,D,E分别为AB,PC的中点.DCBAPE(1)在BC边上是否存在一点F,使得PB平面DEF.(2)若PAC=PBC=90,证明:ABPC(3)在(2)的条件下,若AB=2,AC=,求三棱锥P-ABC的体积4.如图所示,四棱锥中,底面为正方形,平面,分别为、的中点(1)求证:;(2)求三棱锥的体积 BCEDFBGB1(1)证明如图取的中点为,连AF,CF,易得AFCF为平行四边形。 ,又 .4分(2)连接,因是菱形故有又为正三棱柱故有 所以,而所以面面 8分(3)设BD与BD的交点为O ,由图得四棱锥与的公共部分为四棱锥O-ABCD,且O到下底面的距离为1,所以公共部分的体积为。 13分2. 解:(1)连结BD交AC于O,四边形ABCD为菱形, BDAC. 平面AA1C1CABCD,在平面ABCD的射影落在AC上, 为在平面ABCD的射影。 BDAA1 - 4分 (II)作OKAA1于K,连结DK,则DKAA1. 即DKO为二面角DA1AC的平面角,OAK=60,OK=而OD=,tanDKO=2,ABCEFP二面角D-A1A-C的平面角的余弦值是 -8分 (III)点在C1C的延长线上且CP=C1C延长C1C到P使CP=C1C,连结B1C,BP,则BP/B1C.BP/A1D. 又A1D平面DA1C1,BP/平面DA1C1. -12分 。3. 解(1)取BC的中点为F,则有PB平面DEF. FDCBAPEPBEF PB不在平面DEF内 PB平面DEF4分(2)因为是等边三角形,,所以,可得。如图,取中点,连结, 平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷熔融脱金提纯工艺考核试卷及答案
- 锡熔炼炉体材料选择标准工艺考核试卷及答案
- 2025年新能源汽车产业链中锂资源供需关系与价格走势研究报告
- 2025年新全国《退役军人保障法》知识竞赛题库与答案解析
- 服装面料基本知识培训
- 2025年知识产权法考试试卷及答案
- 中考数学总复习《 圆》试题预测试卷含完整答案详解【各地真题】
- 自考专业(汉语言文学)模拟试题及答案详解参考
- 社区治理的问题与对策
- 职业暴露与防护考试试题试题及答案
- GB/T 45654-2025网络安全技术生成式人工智能服务安全基本要求
- T/CAPA 009-2023面部埋线提升技术操作规范
- 塑胶料品质协议书
- 2025届江苏省苏州市高三9月期初阳光调研-语文试卷(含答案)
- 旅行地接协议书
- DB3707T 120-2024无特定病原凡纳滨对虾种虾循环水养殖技术规范
- 2025光伏项目施工合同范本
- 安全课件小学
- 租房协议书合同txt
- 《脑机接口技术与应用》课程教学大纲
- 河南省安阳市文峰区2024-2025学年八年级上学期期末语文试题(原卷版+解析版)
评论
0/150
提交评论