新人教版数学第二十四章圆24.2.2-24.2.3教学设计.doc_第1页
新人教版数学第二十四章圆24.2.2-24.2.3教学设计.doc_第2页
新人教版数学第二十四章圆24.2.2-24.2.3教学设计.doc_第3页
新人教版数学第二十四章圆24.2.2-24.2.3教学设计.doc_第4页
新人教版数学第二十四章圆24.2.2-24.2.3教学设计.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.2.2直线和圆的位置关系(1)教学目标(一)教学知识点1理解直线与圆有相交、相切、相离三种位置关系2了解切线的概念,探索切线与过切点的直径之间的关系(二)能力训练要求1经历探索直线与圆位置关系的过程,培养学生的探索能力2通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化(三)情感与价值观要求通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心教学重点经历探索直线与圆位置关系的过程理解直线与圆的三种位置关系了解切线的概念以及切线的性质教学难点经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系探索圆的切线的性质教学方法教师指导学生探索法教具准备投影片三张第一张:(记作351A)第二张:(记作351B)第三张:(记作351C)教学过程创设问题情境,引入新课师我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?生圆是平面上到定点的距离等于定长的所有点组成的图形即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内师本节课我们将类比地学习直线和圆的位置关系新课讲解1复习点到直线的距离的定义生从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离2探索直线与圆的三种位置关系师直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?生把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系师从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?生有三种位置关系:师直线和圆有三种位置关系,如下图:它们分别是相交、相切、相离当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangent line)当直线与圆有两个公共点时,叫做直线和圆相交当直线与圆没有公共点时,叫做直线和圆相离因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?生当直线与圆有唯一公共点时,这时直线与圆相切;当直线与圆有两个公共点时,这时直线与圆相交;当直线与圆没有公共点时,这时直线与圆相离师能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢?生如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,dr;当直线与圆相切时,dr;当直线与圆相离时,dr,因此可以用d与r间的大小关系断定直线与圆的位置关系师由此可知:判断直线与圆的位置关系有两种方法一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定投影片(351A)(1)从公共点的个数来判断:直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离(2)从点到直线的距离d与半径r的大小关系来判断:dr时,直线与圆相交;dr时,直线与圆相切;dr时,直线与圆相离投影片(351B)例1已知RtABC的斜边AB8cm,AC4cm(1)以点C为圆心作圆,当半径为多长时,AB与C相切?(2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?分析:根据d与r间的数量关系可知:dr时,相切;dr时,相交;dr时,相离解:(1)如上图,过点C作AB的垂线段CDAC4cm,AB8cm;cosA,A60CDACsinA4sin602(cm)因此,当半径长为2cm时,AB与C相切(2)由(1)可知,圆心C到AB的距离d2cm,所以,当r2cm时,dr,C与AB相离;当r4cm时,dr,C与AB相交3议一议(投影片351C)(1)你能举出生活中直线与圆相交、相切、相离的实例吗?(2)上图(1)中的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?(3)如图(2),直线CD与O相切于点A,直径AB与直线CD有怎样的位置关系?说一说你的理由对于(3),小颖和小亮都认为直径AB垂直于CD你同意他们的观点吗?师请大家发表自己的想法生(1)把一只筷子放在碗上,把碗看作圆,筷子看作直线,这时直线与圆相交;自行车的轮胎在地面上滚动,车轮为圆,地平线为直线,这时直线与圆相切;杂技团中骑自行车走钢丝中的自行车车轮为圆,地平线为直线,这时直线与圆相离(2)图(1)中的三个图形是轴对称图形因为沿着d所在的直线折叠,直线两旁的部分都能完全重合对称轴是d所在的直线,即过圆心O且与直线l垂直的直线(3)所谓两条直线的位置关系,即为相交或平行,相交又分垂直和斜交,直线CD与O相切于点A,直径AB与直线CD垂直,因为图(2)是轴对称图形,AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此BACBAD90师因为直线CD与O相切于点A,直径AB与直线CD垂直,直线CD是O的切线,因此有圆的切线垂直于过切点的直径这是圆的切线的性质,下面我们来证明这个结论在图(2)中,AB与CD要么垂直,要么不垂直假设AB与CD不垂直,过点O作一条直径垂直于CD、垂足为M,则OMOA,即圆心O到直线CD的距离小于O的半径,因此CD与O相交,这与已知条件“直线CD与O相切”相矛盾,所以AB与CD垂直这种证明方法叫反证法,反证法的步骤为第一步假设结论不成立;第二步是由结论不成立推出和已知条件或定理相矛盾第三步是肯定假设错误,故结论成立课堂练习课本随堂练习及高效课堂p63-64课时小结本节课学习了如下内容:1直线与圆的三种位置关系(1)从公共点数来判断(2)从d与r间的数量关系来判断2圆的切线的性质:圆的切线垂直于过切点的半径3例题讲解课后作业习题37活动与探究如下图,A城气象台测得台风中心在A城正西方向300千米的B处,并以每小时10千米的速度向北偏东60的BF方向移动,距台风中心200千米的范围是受台风影响的区域(1)A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,试计算A城遭受这次台风影响的时间有多长?分析:因为台风影响的范围可以看成以台风中心为圆心,半径为200千米的圆,A城能否受到影响,即比较A到直线BF的距离d与半径200千米的大小若d200,则无影响,若d200,则有影响解:(1)过A作ACBF于C在RtABC中,CBA30,BA300,ACABsin30300150(千米)AC200,A城受到这次台风的影响(2)设BF上D、E两点到A的距离为200千米,则台风中心在线段DE上时,对A城均有影响,而在DE以外时,对A城没有影响AC150,ADAE200,DCDE2DC100t10(小时)答:A城受影响的时间为10小时板书设计24.2.1 直线和圆的位置关系(一)一、1复习点到直线的距离的定义2探索直线与圆的三种位置关系(1)从公共点个数来判断(2)从点到直线的距离d与半径r间的数量关系来判断3议一议二、课堂练习随堂练习三、课时小结四、课后作业24.2.2直线和圆的位置关系(2)教学目标(一)教学知识点1能判定一条直线是否为圆的切线2会过圆上一点画圆的切线3会作三角形的内切圆(二)能力训练要求1通过判定一条直线是否为圆的切线,训练学生的推理判断能力2会过圆上一点画圆的切线,训练学生的作图能力(三)情感与价值观要求经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题教学重点探索圆的切线的判定方法,并能运用作三角形内切圆的方法教学难点探索圆的切线的判定方法教学方法师生共同探索法教具准备投影片三张第一张:(记作352A)第二张:(记作352B)第三张:(记作352C)教学过程创设问题情境,引入新课师上节课我们学习了直线和圆的位置关系,圆的切线的性质,懂得了直线和圆有三种位置关系:相离、相切、相交判断直线和圆属于哪一种位置关系,可以从公共点的个数和圆心到直线的距离与半径作比较两种方法进行判断,还掌握了圆的切线的性质、圆的切线垂直于过切点的直径由上可知,判断直线和圆相切的方法有两种,是否仅此两种呢?本节课我们就继续探索切线的判定条件新课讲解1探索切线的判定条件投影片(352A)如下图,AB是O的直径,直线l经过点A,l与AB的夹角,当l绕点A旋转时,(1)随着的变化,点O到l的距离d如何变化?直线l与O的位置关系如何变化?(2)当等于多少度时,点O到l的距离d等于半径r?此时,直线l与O有怎样的位置关系?为什么?师大家可以先画一个圆,并画出直径AB,拿直尺当直线,让直尺绕着点A移动观察发生变化时,点O到l的距离d如何变化,然后互相交流意见生(1)如上图,直线l1与AB的夹角为,点O到l的距离为d1,d1r,这时直线l1与O的位置关系是相交;当把直线l1沿顺时针方向旋转到l位置时,由锐角变为直角,点O到l的距离为d,dr,这时直线l与O的位置关系是相切;当把直线l再继续旋转到l2位置时,由直角变为钝角,点O到l的距离为d2,d2r,这时直线l与O的位置关系是相离师回答得非常精彩通过旋转可知,随着由小变大,点O到l的距离d也由小变大,当90时,d达到最大此时dr;之后当继续增大时,d逐渐变小第(2)题就解决了生(2)当90时,点O到l的距离d等于半径此时,直线l与O的位置关系是相切,因为从上一节课可知,当圆心O到直线l的距离dr时,直线与O相切师从上面的分析中可知,当直线l与直径之间满足什么关系时,直线l就是O的切线?请大家互相交流生直线l垂直于直径AB,并经过直径的一端A点师很好这就得出了判定圆的切线的又一种方法:经过直径的一端,并且垂直于这条直径的直线是圆的切线2做一做已知O上有一点A,过A作出O的切线分析:根据刚讨论过的圆的切线的第三个判定条件可知:经过直径的一端,并且垂直于直径的直线是圆的切线,而现在已知圆心O和圆上一点A,那么过A点的直径就可以作出来,再作直径的垂线即可,请大家自己动手生如下图(1)连接OA(2)过点A作OA的垂线l,l即为所求的切线3如何作三角形的内切圆投影片(352B)如下图,从一块三角形材料中,能否剪下一个圆使其与各边都相切分析:假设符号条件的圆已作出,则它的圆心到三角形三边的距离相等因此,圆心在这个三角形三个角的平分线上,半径为圆心到三边的距离解:(1)作B、C的平分线BE和CF,交点为I(如下图)(2)过I作IDBC,垂足为D(3)以I为圆心,以ID为半径作II就是所求的圆师由例题可知,BE和CF只有一个交点I,并且I到ABC三边的距离相等,为什么?生I在B的角平分线BE上,IDIM,又I在C的平分线CF上,IDIN,IDIMIN这是根据角平分线的性质定理得出的师因此和三角形三边都相切的圆可以作出一个,因为三角形三个内角的平分线交于一点,这点为圆心,这点到三角形三边的距离相等,这个距离为半径,圆心和半径都确定的圆只有一个并且只能作出一个,这个圆叫做三角形的内切圆(inscribed circle of triangle),内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心(incenter)4例题讲解投影片(35C)如下图,AB是O的直径,ABT45,ATAB求证:AT是O的切线分析:AT经过直径的一端,因此只要证AT垂直于AB即可,而由已知条件可知ATAB,所以ABTATB,又由ABT45,所以ATB45由三角形内角和可证TAB90,即ATAB请大家自己写步骤生证明:ABAT,ABT45ATBABT45TAB180ABTATB90ATAB,即AT是O的切线课堂练习课本随堂练习及高效课堂练习p65-66课时小结本节课学习了以下内容:1探索切线的判定条件2会经过圆上一点作圆的切线3会作三角形的内切圆4了解三角形的内切圆,三角形的内心概念课后作业习题38活动与探究已知AB是O的直径,BC是O的切线,切点为B,OC平行于弦AD求证:DC是O的切线分析:要证DC是O的切线,需证DC垂直于过切点的直径或半径,因此要作辅助线半径OD,利用平行关系推出34,又因为ODOB,OC为公共边,因此CDOCBO,所以ODCOBC90证明:连结ODOAOD,12,ADOC,13,2434ODOB,OCOC,ODCOBCODCOBCBC是O的切线,OBC90ODC90DC是O的切线板书设计24.2.2 直线和圆的位置关系(二)一、1探索切线的判定条件2做一做3如何作三角形的内切圆4例题讲解二、课堂练习三、课时小结四、课后作业24.2.3圆和圆的位置关系教学目标(一)教学知识点1了解圆与圆之间的几种位置关系2了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系(二)能力训练要求1经历探索两个圆之间位置关系的过程,训练学生的探索能力2通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力(三)情感与价值观要求1通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性2经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维教学重点探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系教学难点探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程教学方法教师讲解与学生合作交流探索法教具准备投影片三张第一张:(记作36A)第二张:(记作36B)第三张:(记作36C)教学过程创设问题情境,引入新课师我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交它们的位置关系都有三种今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权下面我们就来进行有关探讨新课讲解一、想一想师大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?生如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等师很好,现实生活中我们见过的有关两个圆的位置很多下面我们就来讨论这些位置关系分别是什么二、探索圆和圆的位置关系在一张透明纸上作一个O再在另一张透明纸上作一个与O1半径不等的O2把两张透明纸叠在一起,固定O1,平移O2,O1与O2有几种位置关系?师请大家先自己动手操作,总结出不同的位置关系,然后互相交流生我总结出共有五种位置关系,如下图:师大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑生如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,O2上的点在O1的内部;(5)内含:两个圆没有公共点,O2上的点都在O1的内部师总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?生外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点师因此只从公共点的个数来考虑,可分为相离、相切、相交三种经过大家的讨论我们可知:投影片(36A)(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离,相切三、例题讲解投影片(36B)两个同样大小的肥皂泡黏在一起,其剖面如图所示(点O,O是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求TPN的大小分析:因为两个圆大小相同,所以半径OPOPOO,又TP、NP分别为两圆的切线,所以PTOP,PNOP,即OPTOPN90,所以TPN等于360减去OPTOPNOPO即可解:OPOOPO,POO是一个等边三角形OPO60又TP与NP分别为两圆的切线,TPONPO90TPN36029060120四、想一想如图(1),O1与O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果O1与O2内切呢?如图(2)师我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立证明:假设切点T不在O1O2上因为圆是轴对称图形,所以T关于O1O2的对称点T也是两圆的公共点,这与已知条件O1和O2相切矛盾,因此假设不成立则T在O1O2上由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上在图(2)中应有同样的结论通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线五、议一议投影片(36C)设两圆的半径分别为R和r(1)当两圆外切时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论