


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形外心及性质定义三角形外接圆的圆心叫做三角形的外心 三角形外接圆的圆心也就是三角形三边中垂线的交点,三角形的三个顶点就在这个外接圆上 三条中垂线共点证明 l、m为中垂线 AF=BF=FC 所以BC中垂线必过F 三角形外心的性质设ABC的外接圆为G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2 性质1:(1)锐角三角形的外心在三角形内; (2)直角三角形的外心在斜边上,与斜边中点重合; (3)钝角三角形的外心在三角形外. 性质2:BGC=2A,(或BGC=2(180-A). 性质3:GAC+B=90 证明:如图所示延长AG与圆交与P A、C、B、P四点共圆 P=B P+GAC=90 GAC+B=90 性质4:点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是ABC外心的充要条件是: (1)向量PG=(tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC). 或(2)向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC. 性质5:三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.外心到三顶点的距离相等。 性质6:点G是平面ABC上一点,那么点G是ABC外心的充要条件(向量GA+向量GB)向量AB= (向量GB+向量GC)向量BC=(向量GC+向量GA)向量CA=0. 三角形外心的做法分别作三角形两边的中垂线交点计作O 以O为圆心OA为半径画圆 圆O即为所求 外心的求法设三角形三边及其对角分别为a、b、c,A、B、C 正弦定理有r=a/(2s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海市车辆租赁合同范本
- 2025年技术改造借款合同范本
- 2025保管合同范本
- 2025最简单采购合同范本
- Module1 (教学设计)-外研版(三起)英语五年级上册
- 2025电路维修合同范本
- 2025年秋季中学开学致家长的一封信(范本)
- 2025年混凝土搅拌工高级模拟习题及答案(附解析)
- 2025年爆破人员作业试题及答案
- 2025年产科护工面试题及答案
- DB11T 2440-2025 学校食堂病媒生物防制规范
- 高压氧的健康宣教
- 2025至2030中国硅单晶生长炉行业项目调研及市场前景预测评估报告
- 子宫肌瘤麻醉管理
- 成人床旁心电监护护理规程
- 食用菌种植项目可行性研究报告立项申请报告范文
- 2025版技术服务合同协议
- 焦炉机械伤害事故及其预防
- GB 5768.1-2025道路交通标志和标线第1部分:总则
- 江西红色文化考试试题及答案
- 苏州市施工图无障碍设计专篇参考样式(试行)2025
评论
0/150
提交评论