主成分分析与医学应用.doc_第1页
主成分分析与医学应用.doc_第2页
主成分分析与医学应用.doc_第3页
主成分分析与医学应用.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

主成分分析与医学应用10级GIS班 沈娅男 100154022在社会经济各方面的问题的研究中,问题的解决常常牵涉到许多层面和变量因素,各因素间往往会存在一定的相关关系。变量因素太多,无疑会增加分析问题的难度和复杂性,因此,我们很容易联想到在相关关系分析的基础上,用尽可能少的新变量来拟合代替原来较多的变量,而尽可能多的保留原来变量所反映的信息,这就是主成分分析方法。主成分分析方法反映了一种降维处理和分析的思维方法,在解决各种复杂问题时往往能起到意想不到的作用。在这里,我着重想要体现主成分分析在医学研究中的应用。一方面是因为医学与人类的健康密切相关,医学的发展关系到人类最根本的福祉;另一方面是因为医学具备巨大的实践价值,医学的研究成果可以发展生产力从而带动国民经济的发展。近年来,由于统计学的发展和各种技术的进步,对数据进行各种定量分析已被广泛应用于医学研究中。主成分分析方法也被广泛使用。在这里我选择了一个案例来说明主成分分析在医学研究中的作用。分析的数据来自中国主要年份儿童保健情况统计(19962007)。年份出生体重小于两千五百克比重 %围产儿死亡率新生儿破伤风发病率(1/万)新生儿破伤风死亡率(1/万)五岁以下儿童中重度营养不良比重%新生儿访视率 %三岁以下儿童系统管理率 %七岁以下儿童保健管理率%1,99614.444.122.903.7381.4061.4162.701,9972.3115.144.162.973.5182.3865.6565.831,9982.5814.942.741.863.4183.7469.0768.891,9992.3914.222.241.483.2985.4272.3471.772,0002.4013.991.881.163.0985.8073.8473.372,0012.3513.281.410.843.0186.2774.6574.472,0022.3912.471.330.732.8386.1273.8874.032,0032.2612.241.400.832.7084.6572.7772.682,0042.2011.080.980.512.5684.9673.7374.442,0052.2110.270.770.392.3485.0373.8874.792,0062.229.680.640.322.1084.7073.9075.002,0072.268.710.470.202.0285.5974.3975.89中国主要年份儿童保健情况统计(19962777)本例中有9个变量,分别是年份、出生体重小于两千五百克比重、围产儿童死亡率、新生儿破伤风发病率、新生儿破伤风死亡率、五岁以下儿童中重度营养不良比重、新生儿访视率、三岁以下儿童系统管理率、七岁以下儿童保健管理率。然后按下列步骤计算(利用SPSS软件):(1)、计算相关系数矩阵:我利用SPSS软件求得了除年份以外的另外八个变量之间的相关系数矩阵,结果如下表,从表中可以看出,各变量之间具有一定的相关关系而且有些相关系数还比较大,接近于1,所以本例很适合使用主成分分析。相关矩阵出生体重小于两千五百克比重围产儿死亡率新生儿破伤风发病率新生儿破伤风死亡率五岁以下儿童中重度营养不良比重新生儿访视率三岁以下儿童系统管理率七岁以下儿童保健管理率出生体重小于两千五百克比重1.000.331-.064-.075.142.439.355.234围产儿死亡率.3311.000.848.833.970-.429-.607-.730新生儿破伤风发病率-.064.8481.000.999.918-.807-.918-.966新生儿破伤风死亡率-.075.833.9991.000.905-.820-.924-.968五岁以下儿童中重度营养不良比重.142.970.918.9051.000-.563-.748-.842新生儿访视率.439-.429-.807-.820-.5631.000.950.910三岁以下儿童系统管理率.355-.607-.918-.924-.748.9501.000.985七岁以下儿童保健管理率.234-.730-.966-.968-.842.910.9851.000(2)、计算各成分的特征值、方差贡献率和累积贡献率,结果如下:解释的总方差成份初始特征值提取平方和载入合计方差的 %累积 %合计方差的 %累积 %16.08476.05276.0526.08476.05276.05221.58119.75895.8101.58119.75895.8103.2653.31099.1204.039.48399.6035.028.35599.9586.003.03499.9927.001.00799.9988.000.002100.000提取方法:主成份分析。由表可知,只有前两个变量因素的特征值大于1,因此选择前两个作为主成分,第一主成分的方差贡献率是76.052%,前两个主成分的方差占所有成分方差的95.810%,由此可见,前两个主成分已足够代替原来的变量,几乎涵盖原变量的全部信息。(3)、计算主成分载荷,得到以下的成分矩阵:成份矩阵a成份F 1F 2出生体重小于两千五百克比重-.134.932围产儿死亡率.820.537新生儿破伤风发病率.992.074新生儿破伤风死亡率.991.056五岁以下儿童中重度营养不良比重.906.357新生儿访视率-.853.439三岁以下儿童系统管理率-.951.280七岁以下儿童保健管理率-.988.129提取方法 :主成份。a. 已提取了 2 个成份。从中可以得到两主成分的表达式,即:F1 = -0.134*出生体重小于两千五百克比重+0.820*围产儿死亡率+0.992*新生儿破伤风发病率+0.991*新生儿破伤风死亡率+0.906*五岁以下儿童中重度营养不良比重-0.853*新生儿访视率-0.951*三岁以下儿童系统管理率-0.988*七岁以下儿童保健管理率同理可得F2的表达式。(4)、得出结论:在第一主成分中,除了出生体重小于两千五百克比重以外的变量的系数都比较大;在第二主成分中变量出生体重小于两千五百克比重的系数比较大,可以看做是反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论