


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本不等式知识点:1. (1)若,则(2)若,则(当且仅当时取“=”)2. (1)若,则(2)若,则(当且仅当时取“=”) (3)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)4.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)5.若,则(当且仅当时取“=”)注意:(1) 当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例:求下列函数的值域(1)y3x 2 (2)yx技巧一:凑项例 已知,求函数的最大值。技巧二:凑系数例: 当时,求的最大值。变式:设,求函数的最大值。技巧三: 分离换元例:求的值域。技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数的单调性。例:求函数的值域。技巧六:整体代换(“1”的应用)多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。例:已知,且,求的最小值。技巧七例:已知x,y为正实数,且x 21,求x的最大值.技巧八:已知a,b为正实数,2baba30,求函数y的最小值.技巧九、取平方例: 求函数的最大值。应用二:利用均值不等式证明不等式例:已知a、b、c,且。求证:应用三:均值不等式与恒成立问题例:已知且,求使不等式恒成立的实数的取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 种牙专属方案咨询
- Y型钢墩柱施工方案
- 建筑方案设计文本深度要求
- 咨询方案费用
- 商业春季营销活动策划方案
- 清明节营销策划方案
- 房地产夏季营销活动方案
- 职工食堂自查报告
- 绿化给水施工组织设计
- 营口方案智能营销咨询
- 人教版(2024)八年级上册英语Unit 3 Same or Different 教案
- 【MOOC】《电路实验》(东南大学)章节中国大学慕课答案
- 税法(第三版)项目一任务三增值税应纳税额的计算
- 系统数据导出确认单
- Q∕SY 01004-2016 气田水回注技术规范
- TSG Z8002-2022 特种设备检验人员考核规则
- 植物组织培养论文 月季
- QC∕T 900-1997 汽车整车产品质量检验评定方法
- TCECS 822-2021 变截面双向搅拌桩技术规程
- Q∕GDW 12130-2021 敏感用户接入电网电能质量技术规范
- 2019年广东公务员考试行测真题及答案(县级)
评论
0/150
提交评论