三年高考2015_2017高考数学试题分项版解析专题4中综合问题理.docx_第1页
三年高考2015_2017高考数学试题分项版解析专题4中综合问题理.docx_第2页
三年高考2015_2017高考数学试题分项版解析专题4中综合问题理.docx_第3页
三年高考2015_2017高考数学试题分项版解析专题4中综合问题理.docx_第4页
三年高考2015_2017高考数学试题分项版解析专题4中综合问题理.docx_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题24 立体几何中综合问题1.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D、E、F重合,得到三棱锥.当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_.【答案】【解析】【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.2.【2017课标3,理19】如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD(1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.【答案】(1)证明略;(2).【解析】(2)由题设及(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.则由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得.故.设是平面DAE的法向量,则即可取.设是平面AEC的法向量,则同理可得.则.所以二面角D-AE-C的余弦值为. (2)设m,n分别为平面,的法向量,则二面角与互补或相等,故有|cos |cos|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.3.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的,是的中点.()设是上的一点,且,求的大小;()当,求二面角的大小.【答案】().().()两种思路,一是几何法,二是空间向量方法,其中思路一:取的中点,连接,.得四边形为菱形,得到.取中点,连接,.得到,从而为所求二面角的平面角.据相关数据即得所求的角.思路二:以为坐标原点,分别以,所在的直线为,轴,建立如图所示的空间直角坐标系.写出相关点的坐标,求平面的一个法向量,平面的一个法向量计算即得.试题解析:()因为,平面,所以平面,又平面,所以,又,因此()解法一:取的中点,连接,.因为,所以四边形为菱形,所以.取中点,连接,.则,所以为所求二面角的平面角.又,所以.在中,由于,由余弦定理得,所以,因此为等边三角形,故所求的角为.解法二:设是平面的一个法向量.由可得取,可得平面的一个法向量.设是平面的一个法向量.由可得取,可得平面的一个法向量.所以.因此所求的角为.【考点】1.垂直关系.2. 空间角的计算.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.立体几何中角的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力转化与化归思想及基本运算能力等.4【2016高考天津理数】(本小题满分13分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,AB=BE=2.(I)求证:EG平面ADF;(II)求二面角O-EF-C的正弦值;(III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【答案】()详见解析()()【解析】.(I)证明:依题意,.设为平面的法向量,则,即.不妨设,可得,又,可得,又因为直线,所以.(II)解:易证,为平面的一个法向量.依题意,.设为平面的法向量,则,即.不妨设,可得.因此有,于是,所以,二面角的正弦值为.考点:利用空间向量解决立体几何问题5.【2015江苏高考,22】(本小题满分10分)如图,在四棱锥中,已知平面,且四边形为直角梯形,,(1)求平面与平面所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长【答案】(1)(2)【解析】则各点的坐标为,(1)因为平面,所以是平面的一个法向量,因为,设平面的法向量为,则,即令,解得,所以是平面的一个法向量从而,所以平面与平面所成二面角的余弦值为(2)因为,设(),又,则,又,从而设,则当且仅当,即时,的最大值为因为在上是减函数,此时直线与所成角取得最小值又因为,所以6.【2016年高考北京理数】(本小题14分)如图,在四棱锥中,平面平面,.(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【答案】(1)见解析;(2);(3)存在,【解析】所以平面,所以,又因为,所以平面;(2)取的中点,连结,因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系,由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(3)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.7.【2015高考陕西,理18】(本小题满分12分)如图,在直角梯形中,是的中点,是与的交点将沿折起到的位置,如图(I)证明:平面;(II)若平面平面,求平面与平面夹角的余弦值【答案】(I)证明见解析;(II)【解析】试题分析:(I)先证,再可证平面,进而可证平面;(II)先建立空间直角坐标系,再算出平面和平面的法向量,进而可得平面与平面夹角的余弦值试题解析:(I)在图1中,因为,是的中点,所以即在图2中,从而平面又,所以平面.所以得,.设平面的法向量,平面的法向量,平面与平面夹角为,则,得,取,得,取,从而,即平面与平面夹角的余弦值为.8.【2014高考陕西版理第17题】四面体及其三视图如图所示,过棱的中点作平行于,的平面分别交四面体的棱于点.(1)证明:四边形是矩形;(2)求直线与平面夹角的正弦值.【答案】(1)证明见解析;(2).【解析】试题分析:(1)由该四面体的三视图可知:,由题设,面,面面,面面,所以,所以,同理可得,即得四边形是平行四边形,同时可证,即证四边形是矩形;(2)以为坐标原点建立空间直角坐标系,则,设平面的一个法向量因为,,所以,列出方程组,即可得到平面的一个法向量,与的夹角的余弦值的绝对值即为所求.又平面,四边形是矩形(2)如图,以为坐标原点建立空间直角坐标系,则,设平面的一个法向量,即得,取考点:面面平行的性质;线面角的求法.9.【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD中,ADBC,ADC=PAB=90,BC=CD=AD,E为边AD的中点,异面直线PA与CD所成的角为90.()在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;()若二面角P-CD-A的大小为45,求直线PA与平面PCE所成角的正弦值.【答案】()详见解析;().【解析】试题分析:()探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,而这可以利用已知的平行,易得CDEB;从而知为DC和AB的交点;()求线面角,可以先找到这个角,即作出直线在平面内的射影,再在三角形中解出,也可以利用已知图形中的垂直建立空间直角坐标系,用向量法求出线面角(通过平面的法向量与直线的方向向量的夹角来求得)试题解析:()在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M平面PAB),点M即为所求的一个点.理由如下:由已知,BCED,且BC=ED.所以四边形BCDE是平行四边形.,所以CDEB从而CMEB.又EB平面PBE,CM平面PBE,所以CM平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)()方法一:由已知,CDPA,CDAD,PAAD=A,所以CD平面PAD.从而CDPD.所以PDA是二面角P-CD-A的平面角.所以PDA=45.设BC=1,则在RtPAD中,PA=AD=2.过点A作AHCE,交CE的延长线于点H,连接PH.易知PA平面ABCD,从而PACE.于是CE平面PAH.所以平面PCE平面PAH.在RtPAH中,PH=,所以sinAPH=.由PAAB,可得PA平面ABCD.设BC=1,则在RtPAD中,PA=AD=2.作AyAD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)设平面PCE的法向量为n=(x,y,z),由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为,则sin=.所以直线PA与平面PCE所成角的正弦值为.考点:线线平行、线面平行、向量法.10.【2014安徽理20】(本题满分13分)如图,四棱柱中,底面四边形为梯形,,且过三点的平面记为,与的交点为(1) 证明:为的中点;(2) 求此四棱柱被平面所分成上下两部分的体积之比;(3) 若,梯形的面积为6,求平面与底面所成二面角大小【答案】(1)为的中点;(2);(3)【解析】试题分析:(1)利用面面平行来证明线线平行,则出现相似三角形,于是根据三角形相似即可得出,即为的中点(2)连接设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,则先表示出和,就可求出,从而(3)可以有两种方法进行求解第一种方法,用常规法,作出二面角在中,作,垂足为,连接又且,所以平面,于是所以为平面与底面所成二面角的平面角第二种方法,建立空间直角坐标系,以为原点,分别为轴和轴正方向建立空间直角坐标系设因为,所以从而,所以,设平面(2)解:如第(20)题图1,连接设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,则,所以,又所以,故解法2如第(20)题图2,以为原点,分别为轴和轴正方向建立空间直角坐标系设因为,所以从而,所以,设平面的法向量,由得,所以又因为平面的法向量,所以,故平面与底面所成而面积的大小为考点:1二面角的求解;2几何体的体积求解11.【2014年湖北,卷理9】(本小题满分12分) 如图,在棱长为2的正方体中,分别是棱的中点,点分别在棱,上移动,且. (1)当时,证明:直线平面; (2)是否存在,使平面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.【答案】(1)详见解析;(2)【解析】试题分析:(1)由正方体的性质得,当时,证明,由平行于(1)证明:如图1,连结,由是正方体,知,当时,是的中点,又是的中点,所以,所以,而平面,且平面,故平面.(2)如图2,连结,因为、分别是、的中点,所以,且,又,所以四边形是平行四边形,故,且,从而,且,在和中,因为,于是,所以四边形是等腰梯形,同理可证四边形是等腰梯形,分别取、的中点为、,连结、,则,而,故是平面与平面所成的二面角的平面角,若存在,使平面与平面所成的二面角为直二面角,则,连结、,则由,且,知四边形是平行四边形,连结,因为、是、的中点,所以,在中,以为原点,射线分别为轴的正半轴建立如图3的空间直角坐标系,由已知得,所以,(1)证明:当时,因为,所以,即,而平面,且平面,故直线平面.(2)设平面的一个法向量,由可得,于是取,同理可得平面的一个法向量为,若存在,使平面与平面所成的二面角为直二面角,则,即,解得,故存在,使平面与平面所成的二面角为直二面角.考点:正方体的性质,空间中的线线、线面、面面平行于垂直,二面角.12.【2015湖北理19】(本小题满分12分)九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接()证明:试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;()若面与面所成二面角的大小为,求的值【答案】()详见解析;().()如图1,在面内,延长与交于点,则是平面与平面的交线. 由()知,所以. 又因为底面,所以. 而,所以. 故是面与面所成二面角的平面角, 设,有,在RtPDB中, 由, 得, 则 , 解得. 所以故当面与面所成二面角的大小为时,. (解法2)()如图2,以为原点,射线分别为轴的正半轴,建立空间直角坐标系. 设,则,点是的中点,所以,于是,即. 又已知,而,所以. 因, , 则, 所以.由平面,平面,可知四面体的四个面都是直角三角形,即四面体是一个鳖臑,其四个面的直角分别为. ()由,所以是平面的一个法向量;由()知,所以是平面的一个法向量. 若面与面所成二面角的大小为,则,解得. 所以故当面与面所成二面角的大小为时,. 【考点定位】四棱锥的性质,线、面垂直的性质与判定,二面角.13.【2015湖南理19】如图15,已知四棱台上、下底面分别是边长为3和6的正方形,且底面,点,分别在棱,BC上.(1)若P是的中点,证明:;(2)若平面,二面角的余弦值为,求四面体的体积.【答案】(1)详见解析;(2).【解析】试题分析:(1)建立空间直角坐标系,求得相关点的坐标可知问题等价于证明;(2)根据条件二面角的余弦值为,利用空间向量可将四面体视为以为底面的三棱锥,其高,从而求解试题解析:解法一由题设知,两两垂直,以为坐标原点,所在直线分别为轴,轴,轴,建立如图b所示的空间直角坐标系,则相关各点的坐标为,其中,而二面角的余弦值为,因此,解得,或者(舍去),此时,设,而,由此得点,平面,且平面的一个法向量是,即,亦即,从而,于是,将四面体视为以为底面的三棱锥,则其高,故四面体的体积.(2)如图d,过点作交于点,则平面,平面,平面,过点作于点,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论