spss统计软件及应用课程论文.doc_第1页
spss统计软件及应用课程论文.doc_第2页
spss统计软件及应用课程论文.doc_第3页
spss统计软件及应用课程论文.doc_第4页
spss统计软件及应用课程论文.doc_第5页
免费预览已结束,剩余7页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

统计软件及应用课程论文 班级 1083011 学号 108301132 姓名 杨奇军 评分 南昌航空大学经济管理学院关于某地区361个人旅游情况统计分析报告一、 提出问题为了了解某地区的旅游情况,发展该地的旅游经济,促进该地人民的生活水平的提高,现通过SPSS软件对某地区361个人旅游情况进行分析,从而更好地掌握该地旅游情况,为经济发展提出决策二、 数据收集本次分析的数据为某地区361个人旅游情况状况统计表,其中共包含七变量,分别是:年龄,为三类变量;性别,为二类变量(0代表女,1代表男);收入,为一类变量;旅游花费,为一类变量;通道,为二类变量(0代表没走通道,1代表走通道);旅游的积极性,为三类变量(0代表积极性差,1代表积极性一般,2代表积极性比较好,3代表积极性好 4代表积极性非常好);额外收入,一类变量。通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析、。以了解该地区上述方面的综合状况,并分析个变量的分布特点及相互间的关系此数据来源于/publications/jse/jse_data_archive.htm 三、 数据统计处理 1、频数分析 基本的统计分析往往从频数分析开始。通过频数分地区359个人旅游基本状况的统计数据表,在性别、旅游的积极性不同的状况下的频数分析,从而了解该地区的男女职工数量、不同积极性况的基本分布。Statistics性别NValid359Missing0 首先,对该地区的男女性别分布进行频数分析,结果如下性别FrequencyPercentValid PercentCumulative PercentValid女198男16144.844.8100.0Total359100.0100.0表说明,在该地区被调查的359个人中,有198名女性,161名男性,男女比例分别为44.8%和55.2%,该公司职工男女数量差距不大,女性略多于男性其次对原有数据中的旅游的积极性进行频数分析,结果如下表 :旅游积极性FrequencyPercentValid PercentCumulative PercentValid差17147.647.647.6一般7922.022.069.6比较好7922.022.091.6好246.76.798.3非常好61.71.7100.0Total359100.0100.0Statistics通道NValid359Missing0通道FrequencyPercentValid PercentCumulative PercentValid没走通道29381.681.681.6通道6618.418.4100.0Total359100.0100.0表说明,在该地区被调查的359个人中,有没走通道的占81.6%,占绝大多数。上表及其直方图说明,被调查的359个人中,对与旅游积极性差的组频数最高的,为171 人数的47.6%,其次为积极性一般和比较好的,占比例都为22.0%,积性为好的和非常好的比例比较低,分别为24人和6人,占总体的比例为6.7%和1.7%2、相关分析相关分析是分析客观事物之间关系的数量分析法,明确客观事之间有怎样的关系对理解和运用相关分析是极其重要的。函数关系是指两事物之间的一种一一对应的关系,即当一个变量X取一定值时,另一个变量函数Y可以根据确定的函数取一定的值。另一种普遍存在的关系是统计关系。统计关系是指两事物之间的一种非一一对应的关系,即当一个变量X取一定值时,另一个变量Y无法根据确定的函数取一定的值。统计关系可分为线性关系和非线性关系。事物之间的函数关系比较容易分析和测度,而事物之间的统计关系却不像函数关系那样直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。如何测度事物之间的统计关系的强弱是人们关注的问题。相关分析正是一种简单易行的测度事物之间统计关系的有效工具。Correlations收入旅游花费额外收入收入Pearson Correlation1.140*.853*Sig. (2-tailed).008.000N359359359旅游花费Pearson Correlation.140*1.183*Sig. (2-tailed).008.000N359359359额外收入Pearson Correlation.853*.183*1Sig. (2-tailed).000.000N359359359*. Correlation is significant at the 0.01 level (2-tailed).上表是对本次分析数据中,旅游花费、收入、额外收入的相关分析,表中相关系数旁边有两个星号(*)的,表示显著性水平为0.01时,仍拒绝原假设。一个星号(*)表示显著性水平为0.05是仍拒绝原假设。先以现旅游花费这一变量与其他变量的相关性为例分析,由上表可知,旅游花费与额外收入的相关性最大,3、回归分析有相关性分析可得 收入,旅游花费呈线性相关,因此作回归分析Variables Entered/RemovedbModelVariables EnteredVariables RemovedMethod1收入a.Entera. All requested variables entered.b. Dependent Variable: 旅游花费Model SummarybModelRR SquareAdjusted R SquareStd. Error of the Estimate1.140a.020.017129.604a. Predictors: (Constant), 收入b. Dependent Variable: 旅游花费ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression120443.8091120443.8097.170.008aResidual5996596.23935716797.188Total6117040.048358a. Predictors: (Constant), 收入b. Dependent Variable: 旅游花费CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.BStd. ErrorBeta1(Constant)91.56311.5287.943.000收入.024.009.1402.678.008a. Dependent Variable: 旅游花费Residuals StatisticsaMinimumMaximumMeanStd. DeviationNPredicted Value91.74241.90116.4118.342359Std. Predicted Value-1.3456.842.0001.000359Standard Error of Predicted Value6.84047.3629.0483.426359Adjusted Predicted Value92.09271.79116.5319.018359Residual-193.904891.785.000129.423359Std. Residual-1.4966.881.000.999359Stud. Residual-1.6076.891.0001.002359Deleted Residual-223.789894.316-.117130.229359Stud. Deleted Residual-1.6117.390.0041.025359Mahal. Distance.00046.811.9972.955359Cooks Distance.000.199.003.015359Centered Leverage Value.000.131.003.008359a. Dependent Variable: 旅游花费Charts 由上图可知回归方程:y=91.563+ 0.024 (x1) , (P(Sig=0.000)0.01)即 旅游花费=91.563+0.024*收入 ( p0.05旅游花费不成显著性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论