2013江苏高考数学科考试说明及典型题示例(校对word版).doc_第1页
2013江苏高考数学科考试说明及典型题示例(校对word版).doc_第2页
2013江苏高考数学科考试说明及典型题示例(校对word版).doc_第3页
2013江苏高考数学科考试说明及典型题示例(校对word版).doc_第4页
2013江苏高考数学科考试说明及典型题示例(校对word版).doc_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013年江苏省高考说明数学科一、命题指导思想根据普通高等学校对新生文化素质的要求,2013年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据中华人民共和国教育部颁发的普通高中数学课程标准(实验),参照普通高等学校招生全国统一考试大纲(课程标准实验版),结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.1突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查.2重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3注重数学的应用意识和创新意识的考查数学的应用意识的考查,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1几何证明选讲、4-2矩阵与变换、4-4坐标系与参数方程、4-5不等式选讲这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.具体考查要求如下:1必做题部分内 容要 求ABC1集合集合及其表示子集交集、并集、补集2函数概念与基本初等函数函数的概念函数的基本性质指数与对数指数函数的图象与性质对数函数的图象与性质幂函数函数与方程函数模型及其应用3基本初等函数(三角函数)、三角恒等变换三角函数的概念同角三角函数的基本关系式正弦函数、余弦函数的诱导公式正弦函数、余弦函数、正切函数的图象与性质函数的图象与性质两角和(差)的正弦、余弦及正切二倍角的正弦、余弦及正切4解三角形正弦定理、余弦定理及其应用5平面向量平面向量的概念平面向量的加法、减法及数乘运算平面向量的坐标表示平面向量的数量积平面向量的平行与垂直平面向量的应用6数列数列的概念等差数列等比数列7不等式基本不等式一元二次不等式线性规划8复数复数的概念复数的四则运算复数的几何意义9导数及其应用导数的概念导数的几何意义导数的运算利用导数研究函数的单调性与极值导数在实际问题中的应用10算法初步算法的含义流程图基本算法语句11常用逻辑用语命题的四种形式充分条件、必要条件、充分必要条件简单的逻辑联结词全称量词与存在量词12推理与证明合情推理与演绎推理分析法与综合法反证法13概率、统计抽样方法总体分布的估计总体特征数的估计变量的相关性(删除)随机事件与概率古典概型几何概型互斥事件及其发生的概率14空间几何体柱、锥、台、球及其简单组合体柱、锥、台、球的表面积和体积15点、线、面之间的位置关系平面及其基本性质直线与平面平行、垂直的判定及性质两平面平行、垂直的判定及性质16平面解析几何初步直线的斜率和倾斜角直线方程直线的平行关系与垂直关系两条直线的交点两点间的距离、点到直线的距离圆的标准方程与一般方程直线与圆、圆与圆的位置关系空间直角坐标系(删除)17圆锥曲线与方程中心在坐标原点的椭圆的标准方程与几何性质中心在坐标原点的双曲线的标准方程与几何性质顶点在坐标原点的抛物线的标准方程与几何性质2附加题部分内 容要 求ABC选修系列:不含选修系列中的内容1圆锥曲线与方程曲线与方程顶点在坐标原点的抛物线的标准方程与几何性质2空间向量与立体几何空间向量的概念空间向量共线、共面的充分必要条件空间向量的加法、减法及数乘运算空间向量的坐标表示空间向量的数量积空间向量的共线与垂直直线的方向向量与平面的法向量空间向量的应用3导数及其应用简单的复合函数的导数4推理与证明数学归纳法的原理数学归纳法的简单应用5计数原理加法原理与乘法原理排列与组合二项式定理6概率、统计离散型随机变量及其分布列超几何分布条件概率及相互独立事件次独立重复试验的模型及二项分布离散型随机变量的均值与方差内容要求ABC 选修系列中个专题 7几何证明选讲相似三角形的判定与性质定理射影定理圆的切线的判定与性质定理圆周角定理,弦切角定理相交弦定理、割线定理、切割线定理圆内接四边形的判定与性质定理8矩阵与变换矩阵的概念二阶矩阵与平面向量常见的平面变换矩阵的复合与矩阵的乘法二阶逆矩阵二阶矩阵的特征值与特征向量二阶矩阵的简单应用9.坐标系与参数方程坐标系的有关概念简单图形的极坐标方程极坐标方程与直角坐标方程的互化参数方程直线、圆及椭圆的参数方程参数方程与普通方程的互化参数方程的简单应用10不等式选讲不等式的基本性质含有绝对值的不等式的求解不等式的证明(比较法、综合法、分析法)算术-几何平均不等式与柯西不等式利用不等式求最大(小)值运用数学归纳法证明不等式三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1必做题 必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2附加题 附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数满足(i是虚数单位),则的实部是_【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】12. 设集合,则实数的值为_ 【解析】本题主要考查集合的概念、运算等基础知识.本题属容易题.结束kk +1开始k1k25k+40N输出k Y【答案】1.3. 右图是一个算法流程图,则输出的k的值是 【解析】本题主要考查算法流程图的基础知识,本题属容易题.【答案】54. 函数的单调增区间是 【解析】本题主要考查对数函数的单调性,本题属容易题.【答案】5.某棉纺厂为了解一批棉花的质量,从中随机抽取了根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间中,其频率分布直方图如图所示,则在抽测的根中,有_ _根棉花纤维的长度小于.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题.【答案】由频率分布直方图观察得棉花纤维长度小于的频率为,故频数为.6. 现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 DABC【解析】本题主要考查等比数列的定义,古典概型.本题属容易题.【答案】0.6.7. 如图,在长方体中,则四棱锥的体积为 cm3【解析】本题主要考查四棱锥的体积,考查空间想象能力和运算能力.本题属容易题.【答案】6.8.设为等差数列的前项和若,公差,则正整数 【解析】本题主要考查等差数列的前项和及其与通项的关系等基础知识本题属容易题【答案】59.设直线是曲线的一条切线,则实数的值是 .【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题.【答案】.10函数是常数,的部分图象如图所示,则【解析】本题主要考查三角函数的图象与性质,考查特殊角的三角函数值本题属中等题 【答案】.11. 已知是夹角为的两个单位向量, 若,则实数的值为 【解析】本题主要考查用坐标表示的平面向量的加、减、数乘及数量积的运算等基础知识.本题属中等题.【答案】.12在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是 【解析】本题主要考查圆的方程、圆与圆的位置关系、点到直线的距离等基础知识,考查灵活运用相关知识解决问题的能力本题属中等题【答案】13. 已知函数,则满足不等式的的取值范围是_ 【解析】本题主要考查函数的单调性和奇偶性,简单不等式的解法,以及数形结合与分类讨论的思想;考查灵活运用有关的基础知识解决问题的能力. 本题属难题.【答案】.14.满足条件的三角形的面积的最大值是_.【解析】本题主要考查灵活运用有关的基础知识解决问题的能力.本题属难题.【答案】二、解答题15在中,, .(1)求值; (2)设,求的面积.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力.本题属容易题.【参考答案】(1)由及,得故并且即得(2)由(1)得.又由正弦定理得所以因为所以因此,16如图,在直三棱柱中,分别是棱上的点(点 不同于点),且为的中点求证:(1)平面平面; (2)直线平面 【解析】本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力本题属容易题【参考答案】证明:(1)是直三棱柱,平面,又平面,.又平面,平面,又平面,平面平面.(2),为的中点,.又平面,且平面,.又平面,平面.由(1)知,平面,.又平面平面,直线平面.17. 请你设计一个包装盒,如图所示,是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点,正好形成一个正四棱柱形状的包装盒,在上是被切去的一个等腰直角三角形斜边的两个端点,设.(1)若广告商要求包装盒侧面积S(cm)最大,试问应取何值?(2)若广告商要求包装盒容积V(cm)最大,试问应取何值?并求出此时包装盒的高与底面边长的比值。【解析】本题主要考查函数的概念、导数等基础知识,考查数学建模能力、空间想象能力、数学阅读能力及解决实际问题的能力本题属中等题【参考答案】设包装盒的高为,底面边长为.由题设知(1)所以当时,取得最大值(2),由得(舍),或.当时,递增;当时, 递减所以当时,取得极大值,此时由题设的实际意义可知时,取得最大值,此时包装盒的高与底面边长的比值为。18. 如图,在平面直角坐标系中,过坐标原点的直线交椭圆 于两点,其中点在第一象限,过作轴的垂线,垂足为,连结,并延长交椭圆于点,设直线的斜率为.(1)当时,求点到直线的距离;(2)对任意,求证:.【解析】本题主要考查椭圆的标准方程、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力、推理论证能力本题属中等题【参考答案】(1)直线的方程为,代入椭圆方程得,解得因此,于是,直线的斜率为,故直线的方程为.因此,点到直线的距离为.(2)解法一:将直线的方程代人,解得记,则,于是,从而直线的斜率为,其方程为.代入椭圆方程得,解得或.因此,于是直线的斜率,因此所以解法二:设,则且设直线PB,AB的斜率分别为因为C在直线AB上,所以从而因此所以19. (1)设是各项均不为零的项等差数列,且公差若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.(i)当时,求的数值;(ii)求的所有可能值(2)求证:存在一个各项及公差均不为零的项等差数列,任意删去其中的项都不能使剩下的项(按原来的顺序)构成等比数列【解析】本题以等差数列、等比数列为平台,主要考查学生的探索与推理能力本题属难题【参考答案】 首先证明一个“基本事实”一个等差数列中,若有连续三项成等比数列,则这个数列的公差.事实上,设这个数列中的连续三项成等比数列,则由此得,故(1)(i)当时,由于数列的公差故由“基本事实推知,删去的项只可能为或若删去,则由成等比数列,得.因故由上式得即此时数列为满足题设若删去,则由成等比数列,得因故由上式得即此时数列为满足题设综上可知的值为或1 (ii)当时,则从满足题设的数列中删去任意一项后得到的数列,必有原数列中的连续三项,从而这三项既成等差数列又成等比数列,故由“基本事实”知,数列的公差必为0,这与题设矛盾所以满足题设的数列的项数又因题设故或当时,由(i)中的讨论知存在满足题设的数列当时,若存在满足题设的数列则由“基本事实”知,删去的项只能是,从而成等比数列,故及分别化简上述两个等式,得及故矛盾因此,不存在满足题设的项数为5的等差数列 综上可知,只能为4我们证明:若一个等差数列的首项与公差的比值为无理数,则此等差数列满足题设要求 证明如下:假设删去等差数列中的项后,得到的新数列(按原来的顺序)构成等比数列,设此新数列中的连续三项为于是有化简得由知,与同时为零或同时不为零若且则有即得从而矛盾因此,与都不为零,故由式得因为均为非负整数,所以式右边是有理数,而是一个无理数,所以式不成立这就证明了上述结果因是一个无理数因此,取首项公差则相应的等差数列是一个满足题设要求的数列20. 已知是实数,函数 和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致(1)设,若函数和在区间上单调性一致,求实数的取值范围;(2)设且,若函数和在以为端点的开区间上单调性一致,求的最大值【解析】本题主要考查函数的概念、性质及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力本题属难题【参考答案】(1)由题意知在上恒成立,因为,故,进而,即在区间上恒成立,所以因此的取值范围是.(2)令,解得,若,由得又因为,所以函数和在上不是单调性一致的因此现设当时,;当时,因此,当时,故由题设得且,从而,于是.因此且当时等号成立,又当时,从而当时,故函数和在上单调性一致.因此的最大值为.B附加题部分1选修 几何证明选讲如图,是圆的直径,为圆上一点,过点作圆的切线交的延长线于点,若,求证:【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力本题属容易题【参考答案】连结,因为是圆的直径,所以因为是圆的切线,所以,又因为所以于是从而即得故2选修矩阵与变换在直角坐标系中,已知的顶点坐标为,求在矩阵对应的变换下所得到的图形的面积,这里矩阵【解析】本题主要考查矩阵的运算、矩阵与变换之间的关系等基础知识本题属容易题【参考答案】方法一:由题设得由可知三点在矩阵对应的变换下所得到的点分别是计算得的面积为l所以ABC在矩阵对应的变换下所得到的图形的面积为1方法二:在矩阵对应的变换下,一个图形变换为其绕原点逆时针旋转得到的图形;在矩阵作用下,一个图形变换为与之关于直线对称的图形因此,在矩阵对应的变换下所得到的图形,与全等从而其面积等于ABC的面积,即为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论