信号与系统课件chapter1.ppt_第1页
信号与系统课件chapter1.ppt_第2页
信号与系统课件chapter1.ppt_第3页
信号与系统课件chapter1.ppt_第4页
信号与系统课件chapter1.ppt_第5页
已阅读5页,还剩123页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SignalsandSystemsAlanV OppenheimAlanS WillskyS HamidNawabTeacher 湛柏明E mail zhanbm Introduction Status SignalsandSystemsisaveryimportantfundamentalcourse thefundamentaltheories conceptsandmethodsestablishedinthiscoursearethefoundationofourspecialty Introduction Objective DiscussandstudythefundamentaltheoriesandmethodsforwhichthedeterministicsignalspassthroughtheLTIsystems Preview Chapter1 SignalsandSystemsConstructthebasicconceptsaboutsignalsandsystemsChapter2 LTISystemsIntroducethetheoriesandmethodsforthetime domainanalysisofLTIsystems Theemphasisistheconvolutionmethod x t y t Preview Chapter3and4 Continuous TimeFourierSeriesandTransformAnimportanttoolforsignalanalysisChapter6 TimeandFrequencyCharacterizationofSignalsandSystemsChapter7 SamplingSamplingisabridgeconnectingtheanalogsignalsandthedigitalsignals Preview Chapter8 CommunicationSystemsIntroducetheapplicationsoftheFourierTransformChapter9 TheLaplaceTransformTheLaplacetransformisalsoanimportanttoolinsignalandsystemanalysis Goback Chapter1SignalsandSystems Contents 1 1Continuous timeanddiscrete timesignals1 Whatisasignal 2 Whatisasystem 3 Continuous timeanddiscrete timesignals4 Howtorepresentasignal 5 Examplesofsignals6 Summary Contents 1 2TransformationoftheIndependentVariable1 Timeshifting2 Timereversal3 Timescaling4 Examples5 Periodicsignals6 Evenandoddsignals Contents 1 3 1 4Somebasicbuildingblocksofsignals1 SinusoidalSignals2 ExponentialSignals3 UnitImpulseandUnitStepFunctions Contents 1 5Continuous timeanddiscrete timesystems1 Continuous timeanddiscrete timesystems2 Examplesofsystems3 Interconnectionsofsystems Contents 1 6Thesystemproperties 1 SystemswithandwithoutMemory 2 InvertibilityandInverseSystems 3 Causality 4 Stability 5 TimeInvariance 6 Linearity Examples Summary Whatisasignal Thesignals whicharefunctionsofoneormoreindependentvariables containinformationaboutthebehaviorornatureofsomephysicalphenomena Thecurrentandvoltageinacircuit thespeechsignal etc Goback Whatisasystem Asystemisaninterconnectionofsomeunits devicesandsubsystemsaccomplishingacertainfunction Thecommunicationsystems thecontrolsystems etc Goback Transmitorprocess x t y t 1 1Continuous timeandDiscrete timeSignals DefinitionAsignalx t issaidtobeacontinuous timesignalorananalogsignaliftheindependentvariableiscontinuous Otherwise ifthetimevariableisdiscrete thesignalissaidtobediscrete Acontinuous timesignal Goback Adiscrete timesignal PeriodicSignals wherekisinteger Tiscalledtheperiod 1 2 2PeriodicsignalsAcontinuous timesignalissaidtobeperiodicifitsatisfies PeriodicSignals wherekandNareintegers Niscalledtheperiod Adiscrete timesignalissaidtobeperiodicifitsatisfies PeriodicSignals Thesmallestperiodofaperiodicsignaliscalledthefundamentalperiod Thereciprocalofthefundamentalperiodiscalledthefundamentalfrequency FundamentalPeriodandFundamentalFrequency Goback EvenandOddSignals 1 2 3EvenandOddsignalsArealsignalcanalwaysbeexpressedasasumoftwoparts evenandoddparts Goback 1 3ExponentialandSinusoidalSignals SinusoidalSignals A magnitude phasemeasuredinradians 0 angularfrequencymeasuredinradians s Goback BasedontheparametersCanda thesignalexhibitsdifferentcharacteristics 1 3ExponentialandSinusoidalSignals Continuous timeexponentialsignal Periodiccomplexexponentialsignal Realexponentialsignal Harmonicrelation Examples Generalcomplexexponentialsignal Likethecontinuous timeexponentialsignal alsobasedontheparametersCand thesignalexhibitsdifferentcharacteristics 1 3ExponentialandSinusoidalSignals Adiscrete timeexponentialsignalhasthegeneralform 1 3ExponentialandSinusoidalSignals Adiscrete timeexponentialsignalhasthegeneralform Generalcomplexexponentialsignal Realexponentialsignal Periodicity Sinusoidalsignal Goback harmonicrelation Example 1 4TheUnitImpulseandUnitStepFunction Thediscrete timeunitimpulseandunitstepfunctions1 Definition2 Therelationshipbetweentheunitimpulseandunitstepfunctions3 Samplingpropertyoftheimpulse 1 4TheUnitImpulseandUnitStepFunction Thecontinuous timeunitimpulseandunitstepfunctions1 Definition2 Therelationshipbetweentheunitimpulseandunitstepfunctions3 SamplingpropertyoftheimpulseSignalsexpressedintermsoftheunitstep Goback Summary Inthischapter wehavedevelopedanumberofbasicconceptsrelatedtocontinuous timeanddiscrete timesignalsandsystems SignalscarryinformationSignalscanbemathematicallyexpressedasfunctionsofoneormoreindependentvariables Inourbook wefocusontheone dimensionalsignalwhichinvolvesasingletimevariable Summary Sometimes weoftenrepresentasignalingraph Therearesometypicalsignalsandtheircharacteristicsthatwemustlearnbyheart Theunitstepandunitimpulse therealandcomplexexponentialsignals andsin cossignals Usingthesesignalswecanbuildothercomplicatedsignals Summary Systemsareaninterconnectionofsubsystems Thephysicalmeaningsofsystemsareverybroad Inthischapter werepresentsystemsusingthesebasicways BlockdiagramsMathematicalequationsWehavealsodiscussedsomebasicpropertiesofsystemsandthewaysthathowtoverifytheseproperties Summary Theemphasesare linearity time invariant causalityandstabilityproperties Thesystemsthatsatisfybothlinearityandtime invariantpropertiesarecalledtoastheLTIsystems TheLTIsystemsaretheprimaryfocusinourbook becausealargeclassofnaturesystemscanbecharacterizedbyLTIsystems Homework Readthetextbookfromp1top56 9 14 15 20 21 31Note yourexercisesmustbewritteninEnglishexceptyourname ExamplesofSignals 1 VoltagesandCurrentsinacircuit RCcircuit vs t andvc t voltagesofsourceandcapacitor i t currentinthecircuit ExamplesofSignals 2 Speechsignal ExamplesofSignals 3 Thestockmarketindex Goback RepresentationsofSignals Therearethreewaystorepresentasignal 1 Themathematicalfunction 2 Graphicrepresentation RepresentationsofSignals 3 Foradiscrete timesignal wecanrepresentthesignalasasequenceofnumbers x n 0 0 1 0 23 1 2 1 2 Goback Summaryfortheconceptofsignal Signalscontaininformationingeneral Wecanuseamathematicfunction agraphorasequenceofnumberstorepresentasignal Boththefunctionvalueandtheindependentvariableofcontinuous timesignalsarecontinuous Summaryfortheconceptofsignal 4 Theindependentvariableofadiscrete timesignalisdiscrete 5 Forsomediscrete timesignals theindependentvariableisinherentlydiscrete butotherdiscrete timesignalsaregeneratedbysamplingcontinuous timesignals Goback Timeshifting TimeshiftingOriginalsignalx t Timeshiftedversionofx t Timeshiftedversionsofx t t0ispositive Goback Timereversal TimereversalOriginalsignalx t Timereversedversionofx t Goback Timescaling TimescalingOriginalsignalx t Timescaledversionofx t aisanarbitraryrealvalue When a 1 x t iscompressedtox1 t When a 1 x t isexpandedtox1 t asillustratedinthefollowingfigure Timescaling Goback ExamplesofTransformationsoftheindependentvariable Example1 1 1 2 1 3Givenasignalx t findsignalx 3t 1 Solution Steps x t Timeshifting x t 1 x t 1 Timereversal x t 1 x t 1 Timescaling x 3t 1 IntegrationforTransformationoftheIndependentVariable Givenacontinuous timesignalx t thestepstodeterminethesignalx at b are Determinex t b TimeshiftingDeterminex t b Timereversalifa 03 Determinex at b Timecompressionorexpandingby a Goback ExamplesofTransformationsoftheindependentvariable Timeshiftx t totheleftby1second Goback ExamplesofTransformationsoftheindependentvariable Timereversex t 1 Goback ExamplesofTransformationsoftheindependentvariable Timecompressx t 1 by3 Goback RealExponentialSignals RealExponentialSignalsCandaarereal Fora 0 x t isgrowing Fora 0 x t isdecaying Fora 0 x t isconstant Goback PeriodicComplexExponentialSignals PeriodicComplexExponentialSignalsIfaisapurelyimaginarynumber Leta j 0 C 1 Itisperiodic LetTbetheperiod So PeriodicComplexExponentialSignals Thefundamentalfrequencyisdefinedby or Thefundamentalperiod k 0 1 2 PeriodicComplexExponentialSignals Euler sRelation or PeriodicComplexExponentialSignals Further PeriodicComplexExponentialSignals Forexample acomplexexponentialsignalgivenby PeriodicComplexExponentialSignals Anditwillplayacentralroleinmuchofourtreatmentofsignalsandsystems inpartbecausetheyserveasextremelyusefulbuildingblocksformanyothersignals Page19 Periodiccomplexexponentialisabasicperiodicsignalwhichisimportantbothintheoryandengineering Goback HarmonicRelation HarmonicRelationGivenaperiodiccomplexexponential Forsignalifitsfrequencyisanintegermultipleof 0 i e k k 0 thenwesaythatxk t isthek thharmonicofx t HarmonicRelation Usingaweightedsumofasetofharmonicallyrelatedcomplexexponentials wecanconstructmanyotherperiodicsignals Goback GeneralComplexExponentialSignals GeneralComplexExponentialSignalsThemostgeneralcaseofacomplexexponentialcanbeexpressedintermsofthetwocaseswehaveexaminedsofar therealexponentialandtheperiodiccomplexexponential IfCandaarecomplex thenx t isacomplexexponential GeneralComplexExponentialSignals WeoftenexpressCinthepolarformandexpressaintherectangularform Polarform Rectangularform Then Realpartofx t Imaginarypartofx t r 0 r 0 GeneralComplexExponentialSignals Thesegrowinganddecayingsinusoidalsignalsareplottedinthefollowingfigure Theenvelopesare Goback 1 3 1Continuous timeComplexExponentials Example1 5Givenasignal Expressx t asaproductofasingleperiodiccomplexexponentialandasinglesinusoid Theansweris Goback 1 3 1Continuous timeComplexExponentials Solution Thesignalx t canbeexpressedas FromtheEuler srelation wecanget Sothemagnitudeofx t is Goback 1 3 2Discrete TimeExponentialandSinusoidalSignals RealExponentialSignalsIfCand arereal thesignalx n iscalledtherealexponentialsignal 1 0 1 0 1 3 2Discrete TimeExponentialandSinusoidalSignals For 1 thesignalx n isdecaying 0 1 0 1 3 2Discrete TimeExponentialandSinusoidalSignals For 1 thesignalx n isaconstant 1 1 Goback 1 3 2Discrete TimeExponentialandSinusoidalSignals SinusoidalSignals 1 3 2Discrete TimeExponentialandSinusoidalSignals Ageneralsinusoidalsequence and Goback 1 3 2Discrete TimeExponentialandSinusoidalSignals GeneralComplexExponentialSignalsForthecomplexexponentialsignalx n thenx n canbeexpressedas 1 3 2Discrete TimeExponentialandSinusoidalSignals for 1and 1 Goback 1 3 3PeriodicityofDiscrete timeComplexExponentials minteger PeriodicityNowconsider AssumethatitsperiodisN then Conclusion Thesignalej 0nisperiodicifandonlyif2 0isarationalnumber 1 3 3PeriodicityofDiscrete timeComplexExponentials For 0 0 6radians 0 0 2 radians nonperiodic periodic 1 3 3PeriodicityofDiscrete timeComplexExponentials DeterminationofthefundamentalperiodFortheseperiodicsignals Note BothNandmarepositiveintegers andhavenofactorincommon Thefundamentalfrequencyisdefinedby Usetheformula 1 3 3PeriodicityofDiscrete timeComplexExponentials Averyinterestingphenomenonof Let 0bedifferentvaluesrespectively 1 3 3PeriodicityofDiscrete timeComplexExponentials Weseethatthehighestrateofoscillationofsignaloccursat 0 1 3 3PeriodicityofDiscrete timeComplexExponentials Thisimpliesthatthediscrete timecomplexexponentialsignalsarealwaysperiodicsignalsof withperiod2 Becauseoftheperiodicity thesignalexp j 0n doesnothaveacontinuallyincreasingrateofoscillationas 0isincreasedinmagnitude Goback 1 3 3PeriodicityofDiscrete timeComplexExponentials TheharmonicrelationGivenaperiodiccomplexexponential Forsignal Ifxk n hasafrequency kwhichisanintegermultipleof 0 i e k k 0 thenwesayxk n isthek thharmonicofx n 1 3 3PeriodicityofDiscrete timeComplexExponentials Defineasetofharmonicallyrelatedsequencesto k 0 1 2 ItcanbeseenthereareonlyNdistinctperiodicexponentialsinthesetgivenin k n Goback Thefundamentalperiodis 1 3 3PeriodicityofDiscrete timeComplexExponentials Example 1 6Determinethefundamentalperiodofthediscrete timesignal Solution 1 3 3PeriodicityofDiscrete timeComplexExponentials Goback 1 4TheUnitImpulseandUnitStepFunction 1 4 1TheDiscrete TimeUnitImpulseandUnitStepSequencesThediscrete timeunitimpulseandstepsequencesaredefinedby Goback 1 4TheUnitImpulseandUnitStepFunction Relationshipbetweentheimpulseandthestepfunctions 1 Thediscrete timeimpulseisthefirstdifferenceoftheunitstep thatis 1 4TheUnitImpulseandUnitStepFunction 2 Thediscrete timeunitstepistherunningsumoftheunitimpulse Forn 0 Forn 0 1 4TheUnitImpulseandUnitStepFunction or Forn 0 Forn 0 Goback 1 4TheUnitImpulseandUnitStepFunction Moregenerally SamplingPropertyofthediscrete timeunitimpulse Goback 1 4TheUnitImpulseandUnitStepFunction 1 4 2TheContinuous TimeUnitImpulseandUnitStepFunctionsThecontinuous timeunitstepfunctionisdefinedby Note theunitstepisdiscontinuousatt 0 sothevalueofu t att 0isundefined 1 4TheUnitImpulseandUnitStepFunction Theunitimpulsefunction t isdefinedby Note Theunitimpulsefunction t hasnonzeroatt 0 andhaszeroforallnonzerovaluesoft Andtheareaunder t is1 Goback 1 4TheUnitImpulseandUnitStepFunction 1 Theunitimpulse t isthefirstderivativeoftheunitstepfunctionu t 1 4TheUnitImpulseandUnitStepFunction 2 Theunitstepistherunningintegraloftheunitimpulse Goback 1 4TheUnitImpulseandUnitStepFunction Samplingproperty and Goback 1 4TheUnitImpulseandUnitStepFunction Signalsareoftendefinedintervalbyinterval Forexample supposethatx t isgivenby Signalsexpressedintermsofunit step wherex1 t x2 t x3 t arearbitrarycontinuousfunctionsoft 1 4TheUnitImpulseandUnitStepFunction Suchsignalscanbeexpressedanalyticallyintermsoftheunit stepfunctionu t andtimeshiftsofu t 1 4TheUnitImpulseandUnitStepFunction Example1 7Considerthediscontinuoussignalx t depictedinthefigure Itcanbeexpressedintermsoftheunitstep 1 4TheUnitImpulseandUnitStepFunction Fromtheexpressionofx t intermsoftheunitstep wecanreadilycalculateandgraphthederivativeofx t Goback Thecontinuous timeanddiscrete timesystems Continuous timesystems Discrete timesystems Goback 1 5 1SimpleExamplesofSystems 1 5 1SimpleExamplesofSystemsExample 1 8ConsidertheRCcircuitinthefollowingfigure Determinetherelationshipbetweenvc t andvs t Answer 1 5 1SimpleExamplesofSystems Example 1 10Considerasimplemodelforthebalanceinabankaccountfrommonthtomonth Lety n denotethebalanceattheendofthen thmonth andsupposethaty n evolvesfrommonthtomonthaccordingtothedifferenceequation x n Thenetdeposit 1 5 1SimpleExamplesofSystems Howtorepresentasystem Fromtheaboveexamples weseethatwedescribeasystemusingamathematicalequation calledthemathematicalmodel Foracontinuous timesystem themathematicalmodelisadifferentialequation andforadiscrete timesystem themathematicalmodelisadifferenceequation Goback 1 5 2InterconnectionsofSystems 1 5 2InterconnectionsofSystemsManyrealsystemsarebuiltasinterconnectionsofseveralsubsystems Therearefourtypesofinterconnections series parallel series parallelandfeedbackinterconnections 1 5 2InterconnectionsofSystems Series cascade interconnection Parallelinterconnection 1 5 2InterconnectionsofSystems Series parallelinterconnection 1 5 2InterconnectionsofSystems Feedbackinterconnection Goback 1 6 1SystemswithandwithoutMemory 1 6 1SystemswithandwithoutMemoryDefinition Asystemissaidtobememorylessifitsoutputforeachvalueoftheindependentvariableatagiventimeisdependentonlyontheinputatthatsametime Considerthesystemcharacterizedby Itisamemorylesssystem Acontinuous timesystemcharacterizedby 1 6 1SystemswithandwithoutMemory Thissystemisamemorysystem ismemoryless Considerthesystemdescribedby 1 6 1SystemswithandwithoutMemory Acapacitorisanexampleofacontinuous timesystemwithmemory since Goback 1 6 2InvertibilityandInverseSystems 1 6 2InvertibilityandInverseSystemsDefinition Asystemissaidtobeinvertibleifdistinctinputsleadtodistinctoutputs x n 1 6 2InvertibilityandInverseSystems Anexampleofaninvertiblecontinuous timesystemis Theinversesystemisconstructedas 1 6 2InvertibilityandInverseSystems Givenasystemdescribedby Itsinversesystemis Cascadetheoriginalsystemwiththeinversesystemwegettheidentitysystem Goback 1 6 3Causality 1 6 3CausalityAsystemissaidtobecausaliftheoutputatanytimeonlydependsonvaluesoftheinputatthepresenttimeandinthepast Page46Thusinacausalsystemitisimpossibletogetanoutputbeforeaninputisappliedtothesystem assumingnoinitialenergy 1 6 3Causality TheRCcircuitiscausal sincethecapacitorvoltagerespondsonlyonthepastsourcevoltage Butthesystemsdefinedby and arenot Why Goback 1 6 4Stability 1 6 4StabilityStabilityisanotherimportantsystemproperty Informally astablesystemisoneinwhichsmallinputleadtoresponsesthatdonotdiverge Stablesystem Unstablesystem 1 6 4Stability Considerthesystemgivenby Wehave Itcanbeseenthaty n growswithoutbound Sothesystemisunstable 1 6 4Stability BIBOdefinitionAsystemissaidtobestableifaboundedinputleadstoaboundedoutput Howtocheckasystemwhetherisstableornot Goback 1 6 5TimeInvariance 1 6 5TimeInvarianceConceptually asystemistimeinvariantifthebehaviorandcharacteristicsofthesystemarefixedovertime AnexampleoftimeinvariantsystemistheRCseriescircuitifthevaluesofRandCareconstants 1 6 5TimeInvariance 1 6 5TimeInvarianceConceptually asystemistimeinvariantifthebehaviorandcharacteristicsofthesystemarefixedovertime AnexampleoftimeinvariantsystemistheRCseriescircuitifthevaluesofRandCareconstants 1 6 5TimeInvariance IfthevaluesofRandCarechangedovertime thenthecircuitistimevariant ThevalueRCchangestogreaterovertime ThevalueRCchangestosmallerovertime Goback 1 6 6Linearity 1 6 6LinearityAlinearsystemisasystemthatpossessestheimportantpropertyofsuperposition Ifaninputconsistsoftheweightedsumofseveralsignals thentheoutputisthesuperposition thatis theweightedsum oftheresponsesofthesystemtoeachofthosesignals 1 6 6Linearity Foralinearsystem itmustsatisfybothadditivityandhomogeneity Additivity 1 6 6Linearity Homogeneity Combiningthetwoproperties Goback Examples Causality Example1 12Considerthesystemdefinedby To

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论